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PART I 

CHAPTER 1: TYPES OF 
STATISTICAL STUDIES AND 
PRODUCING DATA 

Chapter 1: Types of Statistical Studies
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1. Why It Matters: Types of 
Statistical Studies and 
Producing Data 

We organized this course around the Big Picture of Statistics. As 
we learn new material, we will always look at how these new ideas 
relate to the Big Picture. In this way the Big Picture is a diagram 
that will help us organize and understand the material we will learn 
throughout the course. 

The Big Picture summarizes the steps in a statistical investigation. 
We begin a statistical investigation with a research question. The 

research question is frequently something we want to know about a 
population. The population can be people or other things, such as 
animals or objects. For example, we might want to know the answer 
to questions such as: 

• What percentage of U.S. adults supports the death penalty? 
(Population: U.S. adults) 

• Do cell phones affect bees? (Population: bees) 
• Do cars get better gas mileage with a new gasoline additive? 

(Population: cars) 

The population is the entire group that we want to know something 
about: 
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In most cases, the population is a large group. Often, the 
population is so large that we cannot collect information from every 
individual in the population. So we select a sample from the 
population. Then we collect data from this sample. This is the first 
step in the statistical investigation. We call this step producing data. 

Of course, we need a sample that represents the population well. 
This involves careful planning but also involves chance. For example, 
if our goal is to determine the percentage of U.S. adults who favor 
the death penalty, we do not want our sample to contain only 
Democrats or only Republicans. So we can give everyone the same 
opportunity to be in the sample, but we will let chance select the 
sample. 

At this step of the investigation we also carefully define what kind 
of information we plan to gather. Then we collect the data. 
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Data is often a long list of information. To make sense of the 
data, we explore it and summarize it using graphs and different 
numerical measures, such as percentages or averages. We call this 
step exploratory data analysis. 

Remember, our goal is to answer a question about a population 
based on a sample. Of course, samples will vary due to chance, and 
we will need to answer our question in spite of this variability. So we 
need to understand how sample results will vary and how sample 
results relate to the population as a whole when chance is involved. 
This is where probability comes in. 

Probability is the “machinery” behind the last step in the process 
called inference. We infer something about a population based on a 
sample. This inference is the conclusion we reach from our sample 
data that answers our original question about the population. 
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Example – The big picture of statistics 

At the end of April 2005, ABC News and the Washington 
Post conducted a poll to determine the percentage of U.S. 
adults who support the death penalty. 

Research question: What percentage of U.S. adults 
support the death penalty? 

Steps in the statistical investigation: 

1. Produce Data: Determine what to measure, then 
collect the data. 
The poll selected 1,082 U.S. adults at random. Each 
adult answered this question: “Do you favor or 
oppose the death penalty for a person convicted of 
murder?” 

2. Explore the Data: Analyze and summarize the data. 
In the sample, 65% favored the death penalty. 

3. Draw a Conclusion: Use the data, probability, and 
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statistical inference to draw a conclusion about the 
population. 
Our goal is to determine the percentage of the U.S. 
adult population that supports the death penalty. We 
know that different samples will give different results. 
What are the chances that our sample reflects the 
opinions of the population within 3%? Probability 
describes the likelihood that our sample is this 
accurate. So we can say with 95% confidence that 
between 62% and 68% of the population favor the 
death penalty. 

 

Let’s Summarize 

A statistical investigation with a research question. Then the 
investigation proceeds with the following steps: 
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• Produce Data: Determine what to measure, then collect the 
data. 

• Explore the Data: Analyze and summarize the data (also called 
exploratory data analysis). 

• Draw a Conclusion: Use the data, probability, and statistical 
inference to draw a conclusion about the population. 

Types of Statistical Studies and Producing Data 

In this first module, we focus on the produce data step in a statistical 
investigation. We discuss two types of statistical investigations: the 
observational study and the experiment. Each type of investigation 
involves a different approach to collecting data. We will also see that 
our approach to collecting data determines what we can conclude 
from the data. 
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2. Introduction: Types of 
Statistical Studies 

What you’ll learn to do: Describe various types of 
statistical studies and the types of conclusions 
that are appropriate. 

 

LEARNING OBJECTIVES 

• From a research question, determine the goal of a 
statistical study. 

• Determine if a study is an experiment or an 
observational study. 

• From a description of a statistical study, determine 
the goal of the study. 

• Based on the study design, determine what types of 
conclusions are appropriate. 

Introduction: Types of Statistical
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3. Types of Statistical Studies 
(1 of 4) 

 

Learning Objectives 

• From a research question, determine the goal of a 
statistical study. 

Before we begin our discussion of the types of statistical studies, 
we look closely at the types of research questions used in statistical 
studies. 

Research Questions about a Population 

Recall that a population is the entire group of individuals or objects 
that we want to study. Usually, it is not possible to study the whole 
population, so we collect data from a part of the population, called 
a sample. We use the sample to draw conclusions about the 
population. 

For example, suppose our research question is “What is the 
average amount of money spent on textbooks per semester by full-
time students at Seattle Central?” We cannot interview every full-
time student at Seattle Central because would take too much time 
and cost too much money. We therefore carefully select a sample of 
full-time students at Seattle Central to represent the population of 

10  |  Types of Statistical Studies (1 of
4)



all full-time students at that college. Then we collect data from the 
sample to estimate the average amount spent on textbooks. 

This example illustrates how the research question guides the 
investigation. A well-stated research question contains information 
about: 

• The population (full-time students at Seattle Central). 
• The information we will collect from each individual in the 

sample. We also call this the variable. The variable is what we 
plan to measure (amount of money spent on textbooks per 
semester). 

• A numerical characteristic about the population related to this 
variable (the average amount of money spent on textbooks per 
semester). 

Here are some common types of research questions about a 
population: 
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Type of Research Question Examples 

Make an estimate about the 
population (often an estimate about 
an average value or a proportion 
with a given characteristic) 

What is the average number of 
hours that community college 
students work each week? 

What proportion of all U.S. college 
students are enrolled at a 
community college? 

Test a claim about the population 
(often a claim about an average 
value or a proportion with a given 
characteristic) 

Is the average course load for a 
community college student 
greater than 12 units? 

Do the majority of community 
college students qualify for federal 
student loans? 

Compare two populations (often a 
comparison of population averages 
or proportions with a given 
characteristic) 

In community colleges, do female 
students have a higher GPA than 
male students? 

Are college athletes more likely 
than nonathletes to receive 
academic advising? 

Investigate a relationship between 
two variables in the population 

Is there a relationship between the 
number of hours high school 
students spend each week on 
Facebook and their GPA? 

Is academic counseling associated 
with quicker completion of a 
college degree? 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=19 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=19 

Research Questions about Cause and Effect 

A research question that focuses on a cause-and-effect relationship 
is common in disciplines that use experiments, such as medicine or 
psychology. These types of questions ask how one variable responds 
as another variable is manipulated. These types of questions involve 
two variables. Here are some examples: 
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• Does cell phone usage increase the risk of developing a brain 
tumor? 

• Does drinking red wine lower the risk of a heart attack? 
• Does playing violent video games increase aggressive 

behavior? 
• Does sex education lower the incidence of teen pregnancy? 

To provide convincing evidence of a cause-and-effect relationship, 
the researcher designs an experiment. We discuss experiments in 
“Collecting Data – Conducting an Experiment.” 

Note: In the previous section, Research Questions about a 
Population, we included examples of questions about the 
relationship between two variables in a population. But in these 
types of questions, we used words like associated, correlated, linked 
to, and connected. These words do not imply a cause-and-effect 
relationship between the variables. We can investigate these types 
of questions without conducting an experiment – an observational 
study will do. We study observational studies in “Collecting Data – 
Sampling.” 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=19 
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4. Types of Statistical Studies 
(2 of 4) 

 

Learning Objectives 

• Determine if a study is an experiment or an 
observational study. 

• From a description of a statistical study, determine 
the goal of the study. 

In general, there are two types of statistical studies: observational 
studies and experiments. 

An observational study observes individuals and measures 
variables of interest. The main purpose of an observational study is 
to describe a group of individuals or to investigate an association 
between two variables. We can answer questions about a population 
with an observational study. We can also investigate a relationship 
between two variables. But in an observational study, researchers do 
not attempt to manipulate one variable to cause an effect in another 
variable. For this reason, an observational study does not provide 
convincing evidence of a cause-and-effect relationship. 

An experiment intentionally manipulates one variable in an 
attempt to cause an effect on another variable. The primary goal 
of an experiment is to provide evidence for a cause-and-effect 
relationship between two variables. But the experiment has to be 
well-designed to provide convincing evidence of a cause-and-effect 
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relationship. We study experiment design in the section “Collecting 
Data – Conducting an Experiment.” 

For now, our goal is to distinguish between these two types of 
studies. We focus on the connection between the research question, 
the type of study, and the kinds of conclusions we can make. 

Example 

Music and Learning 

 

Many students listen to music while studying. Does 
listening to music improve learning? Students in a statistics 
class decide to investigate this question. They write more 
specific research questions related to the topic of music 
and learning. Then they design the following three studies: 

Study 1 
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Specific research questions: Do the majority of college 
students listen to music while they study? Do the majority of 
college students believe that listening to music improves their 
learning? 

To investigate these questions, the statistics students 
conduct a survey in their other classes. They ask these two 
questions: 

• Do you listen to music while you study? 
• Do you think listening to music improves your 

concentration and memory? 

This is an observational study designed to answer two 
questions about a population of college students. Each 
question contains a claim about the population of college 
students. We can use data from this study to see if these 
claims are true. But data from this study cannot provide 
evidence of a cause-and-effect relationship between 
listening to music while studying and improvements in 
learning. 

Study 2 

Specific research question: When we compare students 
who study with music to students who study in a quiet 
environment, which group gives higher ratings for 
understanding what they studied? 

To investigate this question, the instructor divides the 
class into two groups: (1) those who listen to music when 
they study and (2) those who do not listen to music when 
they study. The students keep a journal for a week. Each 
time they study, they record the following information: 

• Length of study session (in minutes) 
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• A rating of how well they understood what they 
studied, on a scale of 1–10: 1 = no understanding, 10 = 
excellent understanding. 

This investigation is also an observational study. It 
compares two populations: (1) college students who listen 
to music when studying and (2) college students who do 
not listen to music when studying. We can also view this as 
an observational study of one population (college students) 
that investigates the relationship between two variables: 
listening to music while studying and perceived 
understanding of material studied. From this study, we 
might learn something interesting about the connection 
between college students’ study habits and their perception 
of their learning. But since this is an observational study, 
data from this study cannot provide evidence of a cause-
and-effect relationship between listening to music while 
studying and improvements in learning. 

Study 3 

Specific research question: Does listening to music 
improve students’ ability to quickly identify information? 

To investigate this question, the instructor uses word-
search puzzles. She divides the class into two groups. 
Students on one side of the room do a word puzzle for 3 
minutes while listening to music on an iPod. Students on 
the other side of the room do a word puzzle for 3 minutes 
without music. The instructor calculates the average 
number of words found by each group. 

This study is an experiment. The instructor manipulates 
music to investigate the impact on puzzle completion. Data 
from this study can provide evidence of a cause-and-effect 
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relationship between listening to music while studying and 
improvements in learning. But the improvement in learning 
is more narrowly defined as the ability to quickly identify 
information, such as words in a puzzle. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=20 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=20 
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5. Types of Statistical Studies 
(3 of 4) 

 

Learning Objectives 

• Based on the study design, determine what types of 
conclusions are appropriate. 

We now focus more closely on studies that investigate a relationship 
between two variables. In these types of studies, one variable is 
the explanatory variable, and the other is the response variable. 
To establish a cause-and-effect relationship, we want to make sure 
the explanatory variable is the only thing that impacts the response 
variable. We therefore get rid of all other factors that might affect 
the response. Then we manipulate the explanatory variable. Our 
goal is to see if it really does affect the response. 

In an observational study, researchers may take steps to reduce 
the influence of these other factors on the response. But it is 
difficult in an observational study to get rid of all the factors that 
may have an influence. In addition, the researchers do not 
manipulate the explanatory variable to see if it affects the response. 
They just collect data and look for an association between the two 
variables. For these reasons, observational studies do not give 
convincing evidence of a cause-and-effect relationship. 

In an experiment, researchers use a variety of techniques to 
eliminate the influence of these other factors. Then they manipulate 
the explanatory variable to see if it affects the response. For this 
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reason, experiments give the strongest evidence for a cause-and-
effect relationship. 

Example 

Hormone Replacement Therapy 

 

When women go through menopause, the production of 
hormones in their bodies changes. The hormonal changes 
can cause a variety of symptoms that may be reduced by 
hormone replacement therapy. In the 1980s, hormone 
replacement therapy was common in the United States. 

In the early 1990s, observational studies suggested that 
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hormone replacement therapy had additional benefits, 
including a reduction in the risk of heart disease. In these 
observational studies, researchers compared women who 
took hormones to those who did not take hormones. Health 
records showed that women taking hormones after 
menopause had a lower incidence of heart disease. But 
women who take hormones are different from other 
women. They tend to be richer and more educated, to have 
better nutrition, and to visit the doctor more frequently. 
These women have many habits and advantages that 
contribute to good health, so it is not surprising that they 
have fewer heart attacks. But can we conclude from these 
studies that the hormones caused the reduction in heart 
attacks? No. The results are confounded by the influence of 
these other factors. 

In 2002, the Women’s Health Initiative sponsored a large-
scale, well-designed experiment to study the health 
implications of hormone replacement therapy. In this 
experiment, researchers randomly assigned over 16,000 
women to one of two treatments. One group took 
hormones. The other group took a placebo. A placebo is a 
pill with no active ingredients that looks like the hormone 
pill. The experiment was double-blind. Blind means that 
women did not know if they were receiving hormones or 
the placebo. Double-blind means that the information was 
coded, so researchers administering the pills did not know 
which treatment the women received. After 5 years, the 
group taking hormones had a higher incidence of heart 
disease and breast cancer. This is exactly the opposite 
result from the result found in the observational studies! In 
fact, the differences were so significant that the 
researchers ended the experiment early. The National 
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Institutes of Health declared that the observational studies 
were wrong. Hormone replacement therapy to treat 
menopausal symptoms is now rarely used. 

What’s the Main Point? 

An observational study can provide evidence of a link or an 
association between two variables. But other factors may also 
influence the results. These other factors are called confounding 
variables. The influence of confounding variables on the response 
variable is one of the reasons that an observational study gives 
weak, and potentially misleading, evidence of a cause-and-effect 
relationship. A well-designed experiment takes steps to eliminate 
the effects of confounding variables, including random assignment 
of people to treatment groups, use of a placebo, or blind conditions. 
Using these precautions, a well-designed experiment provides 
convincing evidence of cause-and-effect. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=21 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=21 
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6. Types of Statistical Studies 
(4 of 4) 

 

Learning Objectives 

• Based on the study design, determine what types of 
conclusions are appropriate. 

26  |  Types of Statistical Studies (4 of
4)



Example 

Multitasking 

Do you constantly text-message while in class? Do you 
jump from one website to another while doing homework? 
If so, then you are a high-tech multitasker. In a study of 
high-tech multitasking at Stanford University, researchers 
put 100 students into two groups: those who regularly do a 
lot of media multitasking and those who don’t. The two 
groups performed a series of three tasks: 

(1) A task to measure the ability to pay attention: 

Students view two images of red and blue 
rectangles flashed one after the other on a computer 
screen. They try to tell if the red rectangles are in a 
different position in the second frame. 
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(2) A task to measure control of memory: 

Students view a sequence of letters flashed onto a 
computer screen, then recall which letters occurred 
more than once. 

(3) A task to measure the ability to switch from one job to 
another: 

Students view numbers and letters together with 
the instructions to pay attention to the numbers, 
then recall if the numbers were even or odd. Then the 
instructions switch. Students are to pay attention to 
the letters and recall if the letters were vowels or 
consonants. 

On every task, the multitaskers did worse than the non-
multitaskers. 

The researchers concluded that “people who are 
regularly bombarded with several streams of electronic 
information do not pay attention, control their memory, or 
switch from one job to another as well as those who prefer 
to complete one task at a time” (as reported in Stanford 
News in 2009). 

“When they’re [high-tech multitaskers] in situations 
where there are multiple sources of information coming 
from the external world or emerging out of memory, they’re 
not able to filter out what’s not relevant to their current 
goal,” said Wagner, an associate professor of psychology at 
Stanford. “That failure to filter means they’re slowed down 
by that irrelevant information.” 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=22 

In general, we should not make cause-and-effect statements from 
observational studies, but in reality, researchers do it all the time. 
This does not mean that researchers are drawing incorrect 
conclusions from observational studies. Instead, they have 
developed techniques that go a long way toward decreasing the 
impact of confounding variables. These techniques are beyond the 
scope of this course, but we briefly discuss a simplified example to 
illustrate the idea. 
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Example 

Smoking and Cancer 

Consider this excerpt from the National Cancer Institute 
website: 

Smoking is a leading cause of cancer and of death 
from cancer. Millions of Americans have health 
problems caused by smoking. Cigarette smoking and 
exposure to tobacco smoke cause an estimated average 
of 438,000 premature deaths each year in the United 
States. 

Notice that the National Cancer Institute clearly states a 
cause-and-effect relationship between smoking and 
cancer. Now let’s think about the evidence that is required 
to establish this causal link. Researchers would need to 
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conduct experiments similar to the hormone replacement 
therapy experiments done by the Women’s Health Initiative. 
Such experiments would be very difficult to do. The 
researchers cannot manipulate the smoking variable. Doing 
so would require them to randomly assign people to smoke 
or to abstain from smoking their whole life. Obviously, this 
is impossible. So how can we say that smoking causes 
cancer? 

In practice, researchers approach this challenge in a 
variety of ways. They may use advanced techniques for 
making statistical adjustments within an observational 
study to control the effects of confounding variables that 
could influence the results. A simple example is the cell 
phone and brain cancer study. 

In this observational study, researchers identified a 
group of 469 people with brain cancer. They paired 
each person who had brain cancer with a person of the 
same sex, of similar age, and of the same race who did 
not have brain cancer. Then they compared the cell 
phone use for each pair of people. This matching 
attempts to control the confounding effects of sex, age, 
and race on the response variable, cancer. With these 
adjustments, the study will provide stronger evidence 
for (or against) a casual link. 

However, even with such adjustments, we should be 
cautious about using evidence from an observational study 
to establish a cause-and-effect relationship. Researchers 
used these types of adjustments in the observational 
studies with hormone replacement therapy. We saw in that 
research that the results were still misleading when 
compared to those of an experiment. 
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So how can the National Cancer Institute state as a fact 
that smoking causes cancer? 

They used other nonstatistical guidelines to build 
evidence for a cause-and-effect relationship from 
observational studies. In this approach, researchers review 
a large number of observational studies with criteria that, if 
met, provide stronger evidence of a possible cause-and-
effect relationship. Here are some simplified examples of 
the criteria they use: 

(1) There is a reasonable explanation for how one variable 
might cause the other. 

• For example, experiments with rats show that 
chemicals found in cigarettes cause cancer in rats. It 
is therefor reasonable to infer that these same 
chemicals may cause cancer in humans. 

• Consider these experiments together with the 
observational studies showing the association 
between smoking and cancer in humans. We now 
have more convincing evidence of a possible cause-
and-effect relationship between smoking and cancer 
in humans. 

(2) The observational studies vary in design so that 
factors that confound one study are not present in another. 

• For example, one observational study shows an 
association between smoking and lung cancer, but 
the people in the study all live in a large city. Air 
pollution in a large city may contribute to the lung 
cancer, so we cannot be sure that smoking is the 
cause of cancer in this study. 

• Another observational study looks only at 
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nonsmokers. This study shows no difference in lung 
cancer rates for nonsmokers living in rural areas 
compared to nonsmokers living in cities. 

• Consider these two studies together. The second 
study suggests that air pollution does not contribute 
to lung cancer, so we now have more convincing 
evidence that smoking (not air pollution) is the cause 
of higher cancer rates in the first study. 

 
 

Let’s Summarize 

• There are four steps in a statistical investigation: 

◦ Ask a question that can be answered by collecting data. 
◦ Decide what to measure, and then collect data. 
◦ Summarize and analyze. 
◦ Draw a conclusion, and communicate the results. 

• There are two types of statistical research questions: 

◦ Questions about a population 
◦ Questions about cause-and-effect 

• To answer a question about a population, we select a sample 
and conduct an observational study. To answer a question 
about cause-and-effect we conduct an experiment. 

• There are two types of statistical studies: 
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◦ Observational studies: An observational study observes 
individuals and measures variables of interest. We conduct 
observational studies to investigate questions about a 
population or about an association between two variables. 
An observational study alone does not provide convincing 
evidence of a cause-and-effect relationship. 

◦ Experiments: An experiment intentionally manipulates one 
variable in an attempt to cause an effect on another 
variable. The primary goal of an experiment is to provide 
evidence for a cause-and-effect relationship between two 
variables. 

• In statistics, a variable is information we gather about 
individuals or objects. 

• When we investigate a relationship between two variables, we 
identify an explanatory variable and a response variable. To 
establish a cause-and-effect relationship, we want to make 
sure the explanatory variable is the only thing that impacts the 
response variable. Other factors, however, may also influence 
the response. These other factors are called confounding
variables. 

• The influence of confounding variables on the response 
variable is one of the reasons that an observational study gives 
weak, and potentially misleading, evidence of a cause-and-
effect relationship. A well-designed experiment takes steps to 
eliminate the effects of confounding variables, such as random 
assignment of people to treatment groups, use of a placebo, 
and blind conditions. For this reason, a well-designed 
experiment provides convincing evidence of cause-and-effect. 
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7. Introduction: Sampling 

What you’ll learn to do: For an observational 
study, critique the sampling plan. Recognize 
implications and limitations of the plan. 

LEARNING OBJECTIVES 

• For an observational study, critique the sampling 
plan. Recognize implications and limitations of the 
plan. 
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8. Sampling (1 of 2) 

 

Learning Objectives 

• For an observational study, critique the sampling 
plan. Recognize implications and limitations of the 
plan. 

We now focus on observational studies and how to collect reliable 
and accurate data for an observational study. 

We know that an observational study can answer questions about 
a population. But populations are generally large groups, so we 
cannot gather data from every individual in the population. Instead, 
we select a sample and gather data from the sample. We use the data 
from the sample to make statements about the population. 

Here are two examples: 

• A political scientist wants to know what percentage of college 
students consider themselves conservatives. The population is 
college students. It would be too time consuming and 
expensive to poll every college student, so the political 
scientist selects a sample of college students. Of course, the 
sample must be carefully selected to represent the political 
perspectives that are present in the population. 

• A government agency plans to test airbags from Honda to 
determine if the airbags work properly. Testing an airbag 
means it has to be inflated and punctured, which ruins the 
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airbag, so the researchers certainly cannot test every airbag. 
Instead, they test a sample of airbags and draw a conclusion 
about the quality of airbags from Honda. 

Important Point 

Our goal is to use a sample to make valid conclusions about a 
population. Therefore, the sample must be representative of the 
population. A representative sample is a subset of the population 
that reflects the characteristics of the population. 

A sampling plan describes exactly how we will choose the sample. 
A sampling plan is biased if it systematically favors certain 
outcomes. 

In our discussion of sampling plans, we focus on surveys. The next 
example is a famous one that illustrates how biased sampling in a 
survey leads to misleading conclusions about the population. 
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Example 

The 1936 Presidential Election 

In 1936, Democrat Franklin Roosevelt and Republican Alf 
Landon were running for president. Before the election, the 
magazine Literary Digest sent a survey to 10 million 
Americans to determine how they would vote. More than 2 
million people responded to the poll; 60% supported 
Landon. The magazine published the findings and predicted 
that Landon would win the election. However, Roosevelt 
defeated Landon in one of the largest landslide presidential 
elections ever. 

What happened? 

The magazine used a biased sampling plan. They selected 
the sample using magazine subscriptions, lists of registered 
car owners, and telephone directories. The sample was not 
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representative of the American public. In the 1930s, 
Democrats were much less likely to own a car or have a 
telephone. The sample therefore systematically 
underrepresented Democrats. The poll results did not 
represent the way people in the general population voted. 

Before we discuss a method for avoiding bias, let’s look at some 
examples of common survey plans that produce unreliable and 
potentially biased results. 

Example 

How to Sample Badly 

Online polls: The American Family Association (AFA) is a 
conservative Christian group that opposes same-sex 
marriage. In 2004, the AFA began a campaign in support of 
a constitutional amendment to define marriage as strictly 
between a man and a woman. The group posted a poll on its 
website asking AFA members to voice their opinion about 
same-sex marriage. The AFA planned to forward the results 
to Congress as evidence of America’s opposition to same-
sex marriage. Almost 850,000 people responded to the poll. 
In the poll, 60% favored legalizing same-sex marriage. 

What happened? Against the wishes of the AFA, the link 
to the poll appeared in blogs, social-networking sites, and a 
variety of email lists connected to gay/lesbian/bisexual 
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groups. The AFA claimed that gay rights groups had skewed 
its poll. Of course, the results of the poll would have been 
skewed in the other direction had only AFA members been 
allowed to participate. 

This is an example of a voluntary response sample. The 
people in a voluntary response sample are self-selected, 
not chosen. For this reason, a voluntary response sample is 
biased because only people with strong opinions make the 
effort to participate. 

Mall surveys: Have you ever noticed someone surveying 
people at a mall? People shopping at a mall are more likely 
to be teenagers, retired people, or people who have more 
money than the typical American. In addition, unless 
interviewers are carefully trained, they tend to interview 
people with whom they are comfortable talking. For these 
reasons, mall surveys frequently overrepresent the opinions 
of white middle-class or retired people. Mall surveys are an 
example of a convenience sample. 

Example 

How to Eliminate Bias in Sampling 

In a voluntary response sample, people choose whether 
to respond. In a convenience sample, the interviewer 
chooses who will be part of the sample. In both cases, 
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personal choice produces a biased sample. Random 
sampling is the best way to eliminate bias. Collecting a 
random sample is like pulling names from a hat (assuming 
every individual in the population has a name in the hat!). In 
a simple random sample everyone in the population has an 
equal chance of being chosen. 

Reputable polling firms use techniques that are more 
complicated than pulling names out of a hat. But the goal is 
the same: eliminate bias by using random chance to decide 
who is in the sample. 

Random samples will eliminate bias, even bias that may be hidden or 
unknown. The next three activities will reveal a bias that most of us 
have but don’t know that we have! We will see how random sampling 
avoids this bias. 

Random Samples 

Instructions: Use the simulation below for this activity. You will see 
60 circles. This is the “population.” Our goal is to estimate the average 
diameter of these 60 circles by choosing a sample. 

1. Choose a sample of five circles that look representative of the 
population of all 60 circles. Mark your five circles by clicking 
on each of them. They will turn orange. Record the average 
diameter for the five circles. (Make sure you have five orange 
circles before you record the average diameter.) 

2. Reset the simulation. 
3. Choose another five circles and record the average diameter 

for this sample of circles. You can reuse a circle, but the 
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sample should not have all the same circles. You now have the 
averages for two samples. 

4. Reset and repeat for a total of 10 samples. Record the average 
diameter for each sample. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 

Now we estimate the average diameter of the 60 circles using 
random samples. 

Instructions: Use the simulation below for this activity. You will 
again see the same 60 circles. As before, this is the “population.” Our 
goal is to estimate the average diameter of these 25 circles by choosing 
a random sample. 

1. Click on the “Generate sample” button to get a random sample 
of five circles by clicking on the random sample button. The 
simulation randomly chooses five circles. Record the average 
diameter for the random sample. 

2. Reset the simulation using the reset button. 
3. Click on the “Generate sample” button to get another random 

sample. Record the average diameter for this random sample. 
You now have the averages for two samples. 

4. Reset and repeat for a total of 10 samples. Record the average 
diameter for each sample. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 

Comment 

Random selection also guarantees that the sample results do not 
change haphazardly from sample to sample. When we use random 
selection, the variability we see in sample results is due to chance. 
The results obey the mathematical laws of probability. We looked 
at this idea briefly in the Big Picture of Statistics. Probability is the 
machinery for drawing conclusions about a population on the basis 
of samples. To use this machinery, the sample must be chosen by 
random chance. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=24 
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9. Sampling (2 of 2) 

 

Learning Objectives 

• For an observational study, critique the sampling 
plan. Recognize implications and limitations of the 
plan. 

Let’s briefly summarize the main points about sampling: 

• We draw a conclusion about the population on the basis of the 
sample. 

• To draw a valid conclusion, the sample must be representative 
of the population. A representative sample is a subset of the 
population that reflects the characteristics of the population. 

• A sample is biased if it systematically favors a certain outcome. 
• Random selection eliminates bias. 

We have not mentioned the size of the sample. Are larger samples 
more accurate? Well, the answer is yes and no. 

Recall the 1936 presidential election. A sample of over 2 million 
people did not correctly identify the winner of the election. Two 
million people is a huge sample, yet the results were completely 
wrong. So a large sample does not guarantee reliable results. 

However, if the samples are randomly selected, then size does 
matter. We see this in the next example. 
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Example 

For Random Samples, Size Matters 

Let’s compare the accuracy of random samples of 
different sizes. 

Suppose there are 10,000 students at your college. Also 
suppose that 65% of these students are eligible for financial 
aid. How accurate are random samples at predicting this 
population value? 

To answer this question, we randomly select 50 students 
and determine the proportion who are eligible for financial 
aid. We repeat this several times. Here are the results for 
three random samples: 

Notice that each random sample has a different result. 
Some results are larger than the true population value of 
65%; some results are smaller than the true population 
value. Because there is no bias in random samples, we 
expect results above and below the true value to occur with 
similar frequency. 

Now we use a simulation to take many more random 
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samples. Again, each sample is composed of 50 randomly 
selected people. Here is a dotplot of the proportion who are 
eligible for financial aid in 100 samples. Each dot is a 
random sample. 

We see that the results from random samples vary from 
0.48 to 0.80. Typical values range from about 0.58 to 0.74. 

Note: Many samples have results below the true 
population value of 0.65, and many have results above 0.65. 
This shows that random samples are not biased. For the 
question Are you eligible for financial aid?, there is no 
systematic favoring of one response over another. The 
samples are representative of the population. 

What happens when we increase the number of people 
in the random sample? 

We increased the number of people in each sample to 
250. Here is dotplot of the results from 100 of these larger 
random samples. 

Notice there is less variability in these larger samples. 
Results range from about 0.58 to 0.73. Typical values range 
from about 0.62 to 0.68. These samples give results that are 
closer to the true population value of 0.65. 
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So what’s the point? Larger samples tend to be more 
accurate than smaller samples if the samples are chosen 
randomly. 

Comment 

The precision of the sample results depends on the size of the 
sample, not the size of the population. The following dotplots 
illustrate this point. Here we selected samples with 250 people in 
each sample, but we varied the size of the population. Each dotplot 
contains 100 samples. 

Notice that the sample results look very similar. For each 
population, the sample results fall between about 0.58 and 0.73. In 
each graph, it is common for sample results to fall between about 
0.62 and 0.68. 

What’s the main point? The size of the population does not affect 
the accuracy of a random sample as long as the population is large. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=25 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=25 

Comment 

If an attempt is made to include every individual from a population 
in a sample, then the investigation is called a census. Every 10 years, 
the U.S. Census Bureau conducts a population census. It attempts to 
collect information about every person living in the United States. 
However, the population census misses between 1% and 3% of the 
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U.S. population and accidentally counts some people more than 
once. A full census is possible only for small populations. 

Let’s Summarize 

• We draw a conclusion about the population on the basis of the 
sample. 

• To draw a valid conclusion, the sample must be representative 
of the population. A representative sample is a subset of the 
population. It also reflects the characteristics of the 
population. 

• A sample is biased if it systematically favors a certain outcome. 
• Random selection eliminates bias. 
• Larger samples tend to be more accurate than smaller samples 

if the samples are chosen randomly. 
• The size of the population does not affect the accuracy of a 

random sample as long as the population is large. 
• If an attempt is made to include every individual from a 

population in a sample, then the investigation is called a 
census. 
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10. Introduction: Conducting 
Experiments 

What you’ll learn to do: Identify features of 
experiment design that control the effects of 
confounding. 

LEARNING OBJECTIVES 

• Identify features of experiment design that control 
the effects of confounding. 
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11. Conducting Experiments (1 
of 2) 

 

Learning Objectives 

• Identify features of experiment design that control 
the effects of confounding. 

We now focus on experiments. 
The primary goal of an experiment is to provide evidence for 

a cause-and-effect relationship between two variables. An 
experiment intentionally manipulates the explanatory variable in an 
attempt to cause an effect on the response variable. To establish 
a cause-and-effect relationship, we want to make sure that the 
explanatory variable is the only factor that impacts the response 
variable. We therefore attempt to get rid of all other factors that 
might affect the response. These other factors are called 
confounding variables. 

To confound means to mix up or to confuse. Confounding 
variables mix up our ability to determine if the explanatory variable 
causes a change in the response variable. If we do not control the 
effects of confounding variables, the experiment does not provide 
evidence of a cause-and-effect relationship between the 
explanatory and response variables. 

Researchers use two common strategies to control the effects of 
confounding variables: 
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• Direct control 
• Random assignment 

Example 

Direct Control 

Researchers compare bacteria reduction for three 
different hand-drying methods. In this experiment, 
participants handled uncooked chicken for 45 seconds, 
then washed their hands with one squirt of soap for 60 
seconds, and then used one of three hand-drying methods. 
After participants completely dried their hands, 
researchers measured the bacteria count on their hands. 
The Infectious Disease News published the results in 2010. 

In this experiment, the explanatory variable is hand-
drying method.The response variable is bacteria count. 
Notice that the explanatory variable determines the three 
treatments in the experiment. Each treatment is a different 
hand-drying method. For this reason, the explanatory 
variable is also called the treatment variable. 

In this experiment, researchers attempt to directly 
control the influence of three variables that could affect the 
bacteria count: 

(1) Length of time participants handle the raw chicken. 

• Direct control: All participants handle the raw 
chicken for 45 seconds. 
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(2) Amount of soap participants use. 

• Direct control: All participants use one squirt of 
soap. 

(3) Amount of time participants wash hands. 

• Direct control: All participants wash their hands for 
60 seconds. 

Notice that the control works by stabilizing the impact of 
the confounding variable across the treatments. For 
example, the amount of soap will still influence the bacteria 
count. We cannot avoid this. But if all participants use the 
same amount of soap, then differences in bacteria count 
among the three treatments cannot be due to the amount 
of soap used. 

Similarly, the amount of time that participants wash their 
hands will influence the bacteria count. But if all 
participants wash their hands for the same amount of time, 
then differences in bacteria count among the three 
treatments cannot be due to the amount of time 
participants washed their hands. This is what we mean 
when we say that the control works by stabilizing the 
impact of the confounding variable across the treatments. 

Now we examine random assignment. Random assignment controls 
the effects of confounding variables that a researcher cannot 
control directly or that are difficult to identify in advance. 
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Example 

Random Assignment 

Medical researchers conducted an experiment to 
compare two different types of surgery for children with 
hernias. They compared the recovery times for each type of 
surgery. The two surgery types are laparoscopic repair (a 
surgery that involves three small incisions) and open repair 
(a surgery that involves one large incision). Researchers 
identified a variety of variables that might influence 
recovery time, such as child’s age, weight, and physical 
fitness level. 

Let’s consider one of these variables: age. How could the 
researchers control the impact of age on recovery time? 

Direct control involves use of children of the same age. 
For example, researchers might use only 10-year-old 
children in the experiment. But it may be difficult to find 
enough 10-year-old children with hernias. So how do 
researchers create treatment groups that are similar with 
respect to age? One way is to assign children at random to 
treatment groups. 

The goal of random assignment is to create similar 
groups with respect to age, weight, and other 
characteristics that might influence recovery time. To 
illustrate how random assignment creates similar groups, 
we focus on age. Here is a dotplot of the ages of the 48 
children with hernias who participated in this experiment. 
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Each dot represents a child. The average age of the 48 
children is 8.29 years. 

If random assignment is working, the average age for 
each treatment group should be about equal. We see how 
random assignment works in the next activity. 

Click Random Assignment to randomly assign the 48 children to 
the two treatments. Repeat this process several times to investigate 
whether random assignment creates groups with similar ages. The 
average age is labeled as the mean and marked with a vertical line. 
Compare the average ages for the treatment groups. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 

What Is the Main Point? 

The goal of random assignment is to create similar treatment 
groups. If the groups are similar, then any differences we see in 
the response variable are due to the differences in treatments. In 
this way, random assignment controls the impact of confounding 
variables. Random assignment in an experiment eliminates 
confounding, just as random selection in a survey eliminates bias. 

Comment 

How do we make random assignments? We use any method that 
allows random chance to choose the treatment for each participant. 
Random assignment means that each participant has an equal 
chance of receiving any one of the treatment options. For example, 
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in the hernia experiment, you could put every child’s name in a hat. 
The first 24 names drawn get the first treatment. The rest of the 
children get the second treatment. You could also flip a coin. Heads 
means the child is assigned to the first treatment. This method 
could create groups with slightly different sizes, which is fine. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 

Learn By Doing 

The following paragraph is from a 1999 USA Today article 
titled “Heart care reflects race and sex, not symptoms.” 

“Previous research suggested that blacks and women 
were less likely than whites and men to get cardiac 
catheterization or coronary bypass surgery for chest pain 
or a heart attack. Scientists blamed differences in illness 
severity, insurance coverage, patient preference, and health 
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care access. The researchers eliminated those differences 
by videotaping actors – two black men, two white men, two 
black women, two white women – describing chest pain 
from identical scripts. They wore identical gowns, used 
identical hand gestures, and were taped from the same 
position. Researchers asked 720 primary care doctors at 
meetings of the American College of Physicians or the 
American Academy of Family Physicians to watch a tape 
and recommend care. The doctors thought the study 
focused on clinical decision making.” 

Researchers rolled a four-sided die to determine which 
video each doctor watched. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=27 
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12. Conducting Experiments 
(2 of 2) 

 

Learning Objectives 

• Avoid overgeneralization of experiment results. 

Let’s summarize what we know about experiments: 

• The goal of the experiment is to provide evidence for a cause-
and-effect relationship between two variables. 

• A well-designed experiment controls the effects of 
confounding variables to isolate the effect of the explanatory 
variable on the response. 

• Two commonly used methods for controlling the effects of 
confounding variables are direct control and random 
assignment. 

• Random assignment uses random chance to assign 
participants to treatments. This creates similar treatment 
groups. With random assignment, we can be fairly confident 
that any differences we observe in the response of treatment 
groups is due to the explanatory variable. In this way, we have 
evidence for a cause-and-effect relationship. 

Now we discuss a few more strategies that are commonly used to 
control the effects of confounding variables. 

In an experiment, we manipulate the explanatory variable to 
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determine if it has an effect on the response variable. Could the 
change we observe in the response variable happen without 
manipulating the explanatory variable? Maybe what we observe 
would have happened anyway. 

For this reason, it is important to include a control group. A 
control group is a group that receives no treatment. The control 
group provides a baseline for comparison. 

Example 

Control Groups 

Music and rats: In David Merrell’s experiment with rats, 
he wanted to examine the relationship between music and 
the ability of rats to run a maze. He had three treatment 
groups: exposure to music by the heavy metal band 
Anthrax, exposure to music by Mozart, and no exposure to 
music. The group of rats that did not listen to music is the 
control group. Merrell’s experiment lasted 1 month. With a 
month of practice, the rats in all the groups would probably 
get faster at running the maze. The control group provides 
a baseline for comparison. At the end of 1 month, the rats in 
the Mozart group were much faster at running the maze 
than were the rats in the other two groups. Comparison to 
the control group shows that the improvement in the 
Mozart group is not due to the rats being more experienced 
with the maze. 

Hernia treatments for children: In this experiment, 
researchers compared two different surgeries. The 
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response variable was recovery time, so it would not have 
made sense to have a no-treatment group. However, one 
type of surgery was the standard treatment for hernias, and 
children who received this surgery represented the control 
group. This group provides a baseline for comparing 
recovery times. 

In experiments that use human participants, use of a control group 
may not be enough to establish whether a treatment really has an 
effect. A substantial amount of research shows that people respond 
in positive ways to treatments that have no active ingredients, a 
response called the placebo effect. A placebo is a treatment with no 
active ingredients, sometimes called a “sugar pill.” 

Example 

The Placebo Effect 

An article published in the Washington Post in 2002 
illustrates the placebo effect in medical experiments. 

After thousands of studies, hundreds of millions of 
prescriptions and tens of billions of dollars in sales, two 
things are certain about pills that treat depression: 
Antidepressants like Prozac, Paxil and Zoloft work. And 
so do sugar pills. A new analysis has found that in the 
majority of trials conducted by drug companies in 
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recent decades, sugar pills have done as well as – or 
better than – antidepressants….The new research may 
shed light on findings such as those from a trial last 
month that compared the herbal remedy St. John’s wort 
against Zoloft. St. John’s wort fully cured 24 percent of 
the depressed people who received it, and Zoloft cured 
25 percent – but the placebo fully cured 32 percent. 

The placebo effect can confound the results of medical 
experiments. It is uncertain what is behind the placebo 
effect, but because people in medical experiments improve 
when taking a placebo, a placebo group provides a baseline 
for comparing treatments. We cannot eliminate the placebo 
effect on a treatment group. Both the placebo group and 
the drug group experience the placebo effect. If a 
treatment produces better results than a placebo, then we 
have evidence that the treatment (and not the placebo 
effect) is responsible for the improvement. 

In experiments that use a placebo, participants do not know 
whether they are receiving the drug or a placebo. The participants 
are blind to the treatment to prevent their own beliefs about the 
drug (or placebo) from confounding the results. 
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Example 

Blinding 

Recall our discussion of the experiment conducted by the 
Women’s Health Initiative to study the health implications 
of hormone replacement therapy. In this experiment, 
researchers randomly assigned over 16,000 women to one 
of two treatments. One group took hormones. The other 
group took a placebo. The experiment was also double-
blind, meaning that neither the women nor the researchers 
knew who had which treatment. 

In a single-blind, experiment only one of the two (either 
the researcher or the participants) do not know which 
treatment the participants receive. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=28 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=28 

To end our discussion of experiments, we consider one last 
question: If an experiment is well-designed, can we generalize the 
results? 

Recall the hormone replacement experiment. This experiment has 
all of the features of a well-designed experiment: 

• A large number of participants (over 16,000 women) 
• Use of a placebo group 
• Random assignment of women to hormone treatment or 

placebo 
• Double-blind design 

After 5 years, the group taking hormones had a higher incidence of 
breast cancer and heart disease. Researchers were so alarmed by 
the results that the experiment was ended early to prevent further 
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harm to the health of the women participating in the hormone 
group. 

As a result of this experiment, the use of hormone replacement 
therapy fell by 66%. 

Yet the British Menopause Society and the International 
Menopause Society questioned this reaction. The Women’s Health 
Concern, a British nonprofit group that provides independent and 
unbiased information about women’s health, wrote: 

It must be remembered that the WHI data on which the concerns 
were raised related to overweight North American women in 
their mid-sixties and not to the women that are treated with 
HRT for their menopausal symptoms in the United Kingdom, 
who are usually around the age of menopause, namely 45–55 
years. 

The concerns expressed here do not challenge the validity of the 
results of the WHI experiment. Instead, they question whether the 
results apply to a larger group of women: women who are younger 
and not overweight when they go through menopause. 

This is an important consideration. If our goal is to generalize 
the results of an experiment to a more general population, we must 
consider issues of sampling design as well as random assignment. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=28 

An Important Point about the Role of Random Chance 
We now know that in an experiment we intentionally manipulate 

the explanatory variable to observe changes in the response 
variable. We use the explanatory variable to create different 
treatments. If we see different responses in the different 
treatments, we want to be able to say that the differences are the 
result of the explanatory variable. We must rule out other possible 
explanations for the differences we observed, so we use direct 
control and random assignment, as well as a control group, a 
placebo group, or blinding as appropriate. 

But none of these strategies will rule out the influence of chance 
variation. When we randomly assign participants to treatments, we 
produce similar groups most of the time. But there is a small chance 
that we will end up with treatment groups that are not similar. 

For example, in the hernia experiment with children, we saw that 
random assignment creates two groups with average ages that are 
close. But there is a very small chance that we could get two groups 
that significantly differ in ages. This will not happen very often, but 
it could. And if it does happen, the results of our experiment are 
confounded by age. 

Similarly, when we investigated how well a random sample 
estimates the proportion of students receiving financial aid in the 
population, we saw that the proportions from random samples gave 
good estimates – most of the time. Occasionally, a random sample 
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did not give a good estimate. Larger random samples varied less, but 
they still varied. 

What’s the Main Point? 

Good study design is important. Random selection in sampling can 
control bias. Random assignment in experiments can control the 
effects of confounding variables. But there is always a small chance, 
even when we randomly sample, that the results we observe in a 
poll do not represent the population well. Similarly, there is always 
a small chance, even when we use random assignment, that the 
differences we observe in an experiment are due to random 
variation and not the explanatory variable. For this reason, we have 
to understand how random chance behaves. This is the role of 
probability. We study probability later in the course, before we learn 
more formal statistical methods for determining if what we observe 
could be a result explained by chance. 

Let’s Summarize 

• The goal of an experiment is to provide evidence for a cause-
and-effect relationship between two variables. 

• A well-designed experiment controls the effects of 
confounding variables to isolate the effect of the explanatory 
variable on the response. 

• Two commonly used methods for controlling the effects of 
confounding variables are direct control and random 
assignment. 

• Random assignment uses random chance to assign 
participants to treatments, which creates similar treatment 
groups. With random assignment, we can be fairly confident 

Conducting Experiments (2 of 2)  |  71



that any differences we observe in the response of treatment 
groups is due to the explanatory variable. In this way, we have 
evidence for a cause-and-effect relationship. 

• Other strategies for controlling confounding variables include 
use of a control group, use of a placebo group, and blinding. 

• A well-designed experiment provides evidence for a cause-
and-effect relationship. But even in a well-designed 
experiment, differences in the response might be due to 
chance. We learn to describe chance behavior when we study 
probability later in the course. 
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13. Putting It Together: Types 
of Statistical Studies and 
Producing Data 

 

Let’s Summarize 

• There are four steps in a statistical investigation: 

◦ Ask a question that can be answered by collecting data. 
◦ Decide what to measure, and then collect data. 
◦ Summarize and analyze. 
◦ Draw a conclusion, and communicate the results. 

• There are two types of statistical studies: 

◦ Observational studies: An observational study observes 
individuals and measures variables of interest. We conduct 
observational studies to investigate questions about a 
population or about an association between two variables. 
An observational study alone does not provide convincing 
evidence of a cause-and-effect relationship. 

◦ Experiments: An experiment intentionally manipulates one 
variable in an attempt to cause an effect on another 
variable. The primary goal of an experiment is to provide 
evidence for a cause-and-effect relationship between two 
variables. 

• In statistics, a variable is information we gather about 
individuals or objects. 

Putting It Together: Types of
Statistical Studies and Producing



Observational Studies 

• In an observational study, we draw a conclusion about the 
population on the basis of a sample. To draw a valid conclusion, 
the sample must be representative of the population. A 
representative sample is a subset of the population. It also 
reflects the characteristics of the population. 

• A sample is biased if it systematically favors a certain outcome. 
Voluntary response samples (such as Internet polls) and 
convenience samples (such as surveys at a mall) are biased. 

• Random selection eliminates bias. In a simple random sample, 
everyone in the population has an equal chance of being 
chosen. In this way, random selection helps ensure that the 
sample is representative of the population. 

• Larger samples tend to be more accurate than smaller samples 
if the samples are chosen randomly. The size of the population 
does not affect the accuracy of a random sample as long as the 
population is large. 

• If an attempt is made to include every individual from a 
population in a sample, then the investigation is called a 
census. 

Experiments 

The goal of the experiment is to provide evidence for a cause-
and-effect relationship between two variables. When we investigate 
a relationship between two variables, we identify an explanatory 
variable and a response variable. To establish a cause-and-effect 
relationship, we want to make sure the explanatory variable is the 
only factor that impacts the response variable. But other factors, 
called confounding variables, may also influence the response. 

• A well-designed experiment takes steps to eliminate the 
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effects of confounding variables. These steps include direct 
control, random assignment of people to treatment groups, 
use of a control or placebo, and blind conditions. Incorporating 
such precautions, a well-designed experiment provides 
convincing evidence of cause-and-effect. 

• Random assignment uses random chance to assign 
participants to treatments, which creates similar treatment 
groups. With random assignment, we can be fairly confident 
that any differences we observe in the response of treatment 
groups is due to the explanatory variable. In this way, we have 
evidence for a cause-and-effect relationship. 

• A well-designed experiment provides evidence for a cause-
and-effect relationship. But even in a well-designed 
experiment, differences in the response might be due to 
chance. We learn to describe chance behavior when we study 
probability later in the course. 
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PART II 

CHAPTER 2: SUMMARIZING 
DATA GRAPHICALLY AND 
NUMERICALLY 

Chapter 2: Summarizing Data
Graphically and Numerically  |  77





14. Why It Matters: 
Summarizing Data 
Graphically and Numerically 

 
Before we begin Summarizing Data Graphically and Numerically, 

let’s see how the new ideas in this module relate to what we learned 
in the previous module, Types of Statistical Studies and Producing 
Data. 

Recall the Big Picture: 
We begin a statistical investigation with a research question. The 

investigation proceeds with the following steps: 

• Produce Data: Determine what to measure, then collect the 
data. ← Types of Statistical Studies and Producing Data 

• Explore the Data: Analyze and summarize the data (also called 
exploratory data analysis). ← Summarizing Data Graphically 
and Numerically 

• Draw a Conclusion: Use the data, probability, and statistical 
inference to draw a conclusion about the population. 

The previous module focused on methods for collecting reliable 
data. In this module, we focus on summarizing and analyzing data. 
In the Big Picture of Statistics, we call this exploratory data 
analysis. 

Why It Matters: Summarizing Data
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15. Introduction: Categorical 
vs. Quantitative Data 

What you’ll learn to do: Distinguish between 
quantitative and categorical variables in context. 

LEARNING OBJECTIVES 

• Distinguish between quantitative and categorical 
variables in context. 

Introduction: Categorical vs.
Quantitative Data  |  81



16. Categorical vs. 
Quantitative Data 

 

Learning Objectives 

• Distinguish between quantitative and categorical 
variables in context. 

Data consist of individuals and variables that give us information 
about those individuals. An individual can be an object or a person. 
A variable is an attribute, such as a measurement or a label. 

Example 

Medical Records 

This dataset is from a medical study. In this study, 
researchers wanted to identify variables connected to low 
birth weights. 
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In this example, the individuals are the patients (the 
mothers). There are six variables in this dataset: 

• Mother’s age at delivery (years) 
• Mother’s weight prior to pregnancy (pounds) 
• Whether mother smoked during pregnancy (yes, 

no) 
• Number of doctor visits during first trimester of 

pregnancy 
• Mother’s race (Caucasian, African American, Asian, 

etc.) 
• Baby’s birth weight (grams) 

There are two types of variables: quantitative and categorical. 

• Categorical variables take category or label values and place 
an individual into one of several groups. Each observation can 
be placed in only one category, and the categories are mutually 
exclusive. In our example of medical records, smoking is a 
categorical variable, with two groups, since each participant 
can be categorized only as either a nonsmoker or a smoker. 
Gender and race are the two other categorical variables in our 
medical records example. 

• Quantitative variables take numerical values and represent 
some kind of measurement. In our medical example, age is an 
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example of a quantitative variable because it can take on 
multiple numerical values. It also makes sense to think about it 
in numerical form; that is, a person can be 18 years old or 80 
years old. Weight and height are also examples of quantitative 
variables. 

Learn By Doing 

We took a random sample from the 2000 US Census. 
Here is part of the dataset. 

https://assessments.lumenlearning.com/assessments/3411 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=33 
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Learn By Doing 

Consumer Reports analyzed a dataset of 77 breakfast 
cereals. Here is a part of the dataset. 

(Note: Consumer Reports is an non-profit organization 
that rates products in an effort to help consumers make 
informed decisions.) 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=33 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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herkimerstatisticssocsci/?p=33 
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17. Introduction: Dotplots 

What you’ll learn to do: Describe the distribution 
of quantitative data using a dotplot. 

 

LEARNING OBJECTIVES 

• Describe the distribution of quantitative data using 
a dotplot. 
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18. Dotplots (1 of 2) 

 

Learning Objectives 

• Describe the distribution of quantitative data using 
a dot plot. 

Introduction 

When we work with data, the data is usually in a table. In this form, 
we can easily see the variable value for each individual. But when we 
analyze data, we are not focused on information about an individual. 
We want to describe a group of individuals. In data analysis, our 
goal is to describe patterns in the data and create a useful summary 
about a group. A table is not a useful way to view data because 
patterns are hard to see in a table. For this reason, our first step in 
data analysis is to create a graph of the distribution of the variable. 

In a graph that summarizes the distribution of a variable, we can 
see 

• the possible values of the variable. 
• the number of individuals with each variable value or interval 

of values. 

In this module, Summarizing Data Graphically and Numerically, we 
focus on summarizing the distribution of a quantitative variable. 
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We discuss the distribution of a categorical variable in depth in the 
module Relationships in Categorical Data with Intro to Probability. 

Example 

Breakfast Cereals 

Here are two graphs of the variable protein for a group of 
breakfast cereals targeted at children. 

In both graphs, the individuals and the variable are the 
same: 

• Individuals: Children’s cereals 
• Variable: Grams of protein in a serving of cereal 

Let’s compare the graphs to determine which graph is a 
better summary of the distribution of protein. 

This graph is called a case-value graph. You can see the 
names of the individual cereals (the cases) and the amount 
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of protein in a serving of each cereal (the variable values). 
For example, Apple Jacks has 2 grams of protein in a 
serving. This graph is NOT a good way to summarize the 
distribution of protein values because we cannot easily 
determine the number of cereals with each protein amount. 

For example, how many cereals have 2 grams of protein 
in a serving? This graph does not make it easy to answer 
this question. We have to move across the graph and count 
the cereals with 2 grams of protein. In this way, a case-
value graph is like a table. We cannot easily see patterns in 
the data or determine the number of individuals with a 
given variable value. 

Here is a second graph of the same data. This graph is 
called a dotplot. A dotplot gives a better summary of the 
distribution of protein. 

In a dotplot, each dot represents one individual. Here, 
each dot is a children’s cereal. The numbers on the 
horizontal axis are the variable values. The vertical axis 
gives the count of cereals. We can easily see that 10 
children’s cereals have 2 grams of protein in a serving. 

From the dotplot, we can easily describe the distribution 
of protein. Here are some observations about this 
distribution: 
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• The amount of protein in a serving varies from 1 to 
6 grams. 

• Most of the cereals have 1 or 2 grams of protein in a 
serving. 

• Larger amounts of protein are less typical. 
• One cereal has 6 grams of protein. This much 

protein is unusual for this group of children’s cereals. 

These observations are a good summary of the data. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=35 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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herkimerstatisticssocsci/?p=35 
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19. Dotplots (2 of 2) 

 

Learning Objectives 

• Describe the distribution of quantitative data using 
a dot plot. 

Now we will give more specific advice on how to describe the 
distribution of a quantitative variable. 

When we describe patterns in data, we use descriptions of shape, 
center, and spread. We also describe exceptions to the pattern. We 
call these exceptions outliers. 

Shape: To describe the shape of a distribution, imagine sketching 
the outline of the data to emphasize the general trend. 
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Example 

Some Common Descriptions of Shape 
Used to Categorize Distributions 

Right skewed: A cluster of data on the left with a tail of 
data tapering off to the right. A right-skewed distribution 
has a lot of data at lower variable values with smaller 
amounts of data at higher variable values. 

• The distribution of sugar in adult cereals is skewed 
to the right. 

Left skewed: A cluster of data on the right with a tail of 
data tapering off to the left. A left skewed distribution has a 
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lot of data at higher variable values with smaller amounts of 
data at lower variable values. 

• The distribution of sugar in children’s cereals is 
skewed to the left. 

Symmetric with a central peak (also called bell-shaped): 
A central peak with a tail in both directions. A bell-shaped 
distribution has a lot of data in the center with smaller 
amounts of data tapering off in each direction. 

• The distribution of calories in children’s cereals is 
symmetric with a central peak. It is bell-shaped. The 
distribution of calories in adult cereals is also roughly 
bell-shaped. 

Uniform: A rectangular shape, the same amount of data 
for each variable value. 
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• Here is the last digit from 47 students’ telephone 
numbers. The distribution of the digits is roughly 
uniform. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=36 

Center and Spread 

To describe the pattern in a distribution of a quantitative variable, 
we describe more than the shape. We also describe the center and 

96  |  Dotplots (2 of 2)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=36#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=36#pb-interactive-content


spread. Later in this module, we develop more precise ways to 
identify the center of a distribution and to measure the spread. For 
now, we discuss these concepts informally. 

When we describe a distribution of a quantitative variable, it is 
helpful to identify a typical value. We choose a single value of the 
variable to represent the entire group. This is one way to think 
about the center of the distribution. 

We also want to describe how much the data varies among 
individuals in the group. Variability is another word for spread. We 
describe the spread in two ways: 

• We look at the smallest value and the largest value to describe 
an overall range in the data. 

• We also describe a range of typical values to represent 
common variable values for the group. 

Example 

Cereals 

Here we use shape, center, and spread to compare the 
distribution of sugar content in adult cereals and children’s 
cereals. 

Compare the shapes: 
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The sugar content in adult cereals is skewed to the right. 
Many adult cereals have less than 8 grams of sugar in a 
serving. A smaller number of adult cereals contain high 
amounts of sugar. The sugar content for children’s cereals 
is skewed to the left. Many children’s cereals have more 
than 8 grams of sugar in a serving, with a smaller number of 
children’s cereals with low amounts of sugar. 

Comment: There is nothing special about the number 8. 
We chose 8 as a convenient reference point to describe the 
opposite trends in these two distributions. 

Compare the centers: 

A typical adult cereal has 3 grams of sugar in a serving. A 
typical children’s cereal has 12 grams of sugar in a serving. 

Comment: Here we looked at the most common value in 
each distribution. We develop more precise ways to 
describe the center of a distribution in the next section. For 
now, just choose a reasonable typical value to represent the 
group. 

Compare the spreads: 

Overall range: Adult cereals have 0 to 14 grams of sugar 
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in a serving. Children’s cereals vary from 1 to 15 grams. So 
both types of cereal vary over a range of 14 grams. 

(Note: Overall range = highest value – lowest value. For 
adult cereals: 14 – 0 = 14. For children’s cereals: 15 – 1 = 14) 

Typical range: Typical adult cereals have between 0 and 
6 grams of sugar in a serving, compared to 9 to 13 grams in 
typical children’s cereals. 

Comment: Here we looked at clumps in the data to 
identify a range of typical values. We develop more precise 
ways to describe the spread a distribution in the last two 
sections of this module. 

When comparing two distributions, we usually tie all of 
these ideas into one paragraph: 

In this sample, children’s cereals have more sugar per 
serving than adult cereals. A typical children’s cereal has 12 
grams of sugar in a serving. It is not uncommon for 
children’s cereals to have 9 to 13 grams of sugar per serving, 
but it is unusual for a children’s cereal to have less than 8 
grams of sugar. A typical adult cereal has 3 grams of sugar 
in a serving. It is not uncommon for adult cereals to have 0 
to 6 grams of sugar in a serving. Larger amounts of sugar 
are less common. 

Here is a paragraph that uses more formal vocabulary to 
summarize the comparison: 

In this sample, children’s cereals have more sugar per 
serving than adult cereals. The distribution of sugar in 
children’s cereals is skewed left with an overall range of 14 
grams. Typical children’s cereals have 9 to 13 grams of sugar 
per serving with 12 grams as the most common amount. 
The distribution of sugar in adult cereals is skewed right 
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with the same overall range of 14 grams. Typical adult 
cereals have 0 to 6 grams of sugar per serving with 3 grams 
as the most common amount. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=36 

Outliers: Outliers are observations that fall outside the overall 
pattern. We develop a more precise method for identifying outliers 
later in this module. For now, use your judgment to identify values 
that appear to be exceptions to the general trend in the data. 
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Example 

Wrist Measurements 

In the distribution of wrist measurements, there are two 
women with unusually large wrists. These women might be 
outliers. They are marked in red. 

The man with the smallest wrist measurement is shown 
in yellow. This man is probably not an outlier. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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herkimerstatisticssocsci/?p=36 
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20. Introduction: Histograms 

What you’ll learn to do: Describe the distribution 
of quantitative data using a histogram. 

LEARNING OBJECTIVES 

• Describe the distribution of quantitative data using 
a histogram. 
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21. Histograms (1 of 4) 

Learning Objectives 

• Describe the distribution of quantitative data using 
a histogram. 

Here we continue our discussion of graphs that describe the 
distribution of a quantitative variable. 

Recall that our goal in data analysis is to describe patterns in 
data and create a useful summary about a group. When a graph 
summarizes the distribution of a variable, we can see 

• the possible values of the variable. 
• the number of individuals with each variable value or interval 

of values. 

As we have seen, a dotplot is a useful graphical summary of a 
distribution. 

A histogram is an alternative way to display the distribution of 
a quantitative variable. Histograms are particularly useful for large 
data sets. A histogram divides the variable values into equal-sized 
intervals. We can see the number of individuals in each interval. 
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Example 

A Histogram of Hip Measurements 

Here we have three graphs of the same set of hip girth 
measurements for 507 adults who exercise regularly. (Hip 
girth is the measurement around the hips.) 

Dotplot: 

From the dotplot, we can see that the distribution of hip 
measurements has an overall range of 79 to 128 cm. For 
convenience, we started the axis at 75 and ended the axis at 
130. 

Dotplot with Bins: 

To create a histogram, divide the variable values into 
equal-sized intervals called bins. In this graph, we chose 
bins with a width of 5 cm. Each bin contains a different 
number of individuals. For example, 48 adults have hip 
measurements between 85 and 90 cm, and 97 adults have 
hip measurements between 100 and 105 cm. 
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Histogram: 

Here is a histogram. Each bin is now a bar. The height of 
the bar indicates the number of individuals with hip 
measurements in the interval for that bin. As before, we can 
see that 48 adults have hip measurements between 85 and 
90 cm, and 97 adults have hip measurements between 100 
and 105 cm. 

Comment: In the histogram, the count is the number of 
individuals in each bin. The count is also called the 
frequency. From these counts, we can determine a 
percentage of individuals with a given interval of variable 
values. This percentage is called a relative frequency. 
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The following questions require us to calculate relative 
frequencies: 

• Approximately what percentage of the sample has 
hip measurements between 85 and 90 cm? 

Answer: Of the 507 adults in the data set, 48 have hip 
measurements between 85 and 90 cm. 

48 out of 507 is 48 ÷ 507 ≈ 0.095 = 9.5% 

So approximately 9.5% of the adults in this sample have 
hip girths between 85 and 90 cm. 

(This calculation might include adults with as 85-cm hip 
measurement but not adults with a 90-cm hip 
measurement. See note below.) 

• A pants manufacturer plans to produce three sizes 
of sweatpants. Size Large will fit hip girths of 100 cm 
or more. What percentage of the sample will wear 
size Large sweatpants? 

Answer: Of the 507 adults in the data set, 158 adults (97 + 
42 + 15 + 3 + 1) = 158 have hip measurements of 100 cm or 
more. 

158 out of 507 is 158 ÷ 507 ≈ 0.312 = 31.2% 

So 31.2% of the adults in this sample will wear size Large 
sweatpants. 

Note: In these calculations, we assume that the value of 
the left-hand endpoint of each bin is included in the count 
for that bin. The value of the right-hand endpoint is not 
included in the count for that bin. For example, the bin 
corresponding to the interval 85 to 90 includes individuals 
with values of 85 but not 90. In histograms pictured in this 
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course, bins will always include values for the left-hand 
endpoint but not the right-hand endpoint. 

Spotlight on percentages 

Percent means “per hundred.” A percentage describes 
a number as a fraction out of 100. 

EXAMPLE 

What percentage of adults in this 
sample wear a large size 
sweatpants? 

1. Identify the appropriate ratio: 158 out of 
507 adults will wear large size sweatpants. 

2. Calculate a percentage: 

◦ Divide to convert the ratio into a 
decimal form: 158÷507 ≈ 0.312 

◦ Multiply by 100 to convert the 
decimal form to a percentage: 0.312 
x 100 = 31.2% 
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◦ 31.2% is 31.2 out of 100 

3. Interpret the percentage: 

◦ For every 100 adults in the sample, 
29.6 will wear a large. 

◦ 29.6% of the adults in this sample 
wear large sweatpants. 

General steps: 

1. Identify the appropriate ratio: You can 
think of the ratio as a fill-in-the-blank: (a 
part) out of (the group) 

◦ The “part” is often a subset of the 
group with a special characteristic. 

2. Calculate the percentage: 

◦ Divide: (part) ÷ (group size) 
◦ Multiply by 100 

3. Interpret the percentage in context: 

For every 100 individuals in the group, (the 
percentage) will have the special characteristic. 
You can interpret the percentage as: Percentage 
of (group) has (special characteristic). 
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Learn By Doing 

Here is a histogram of the distribution of grades on a 
quiz. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=38 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=38 
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This next exercise will remind us when to use a histogram. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=38 
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22. Histograms (2 of 4) 

 

Learning Objectives 

• Describe the distribution of quantitative data using 
a histogram. 

We have discussed two types of graphs that summarize a 
distribution of a quantitative variable: dotplots and histograms. 

From a dotplot, we also described the pattern in the data with 
statements about shape, center, and spread. We have to be more 
cautious making similar statements using a histogram because our 
perception of shape, center, and spread can be affected by how the 
bins are defined. We investigate this important point in the next 
example. 

Example 

We used the same set of data to construct these three 
histograms of student scores. Are you surprised by how 
different the distribution looks in each histogram? 
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The histogram on the left has a bin width of 20. The first 
bin starts at 40. To create the middle histogram, we 
changed the bin width to 10 but kept the first bin starting at 
40. To create the last histogram, we kept the bin width at 10 
but started the first bin at 45. 

These changes affect our description of the shape, 
center, and spread of this set of data. For example, in the 
histogram on the left, the distribution looks symmetric with 
a central peak. In the histogram on the right, the 
distribution looks slightly skewed to the right. Based on the 
middle histogram, we might estimate that most students 
scored between 70 and 80. But the histogram on the right 
suggests that typical students scored between 65 and 75. 

Why does changing the bin size and the starting point 
of the first bin change the histogram so drastically? 

When we change the bins, the data gets grouped 
differently. The different grouping affects the appearance 
of the histogram. 

To illustrate this point, we highlighted the five students 
who scored in the 70s in each histogram. 

• In the histogram on the left, these five students are 
grouped in the middle bin with other students who 
scored between 60 and 80. 

• In the histogram in the middle, these five students 
form a bin of their own, since no other students 
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scored between 70 and 80. 
• In the histogram on the right, these five students 

are in separate bins. 

Which histogram gives the most helpful summary of 
the distribution? 

For this situation, the middle histogram is probably the 
most useful summary because the intervals correspond to 
letter grades. 

Our general advice is as follows: 

• Avoid histograms with large bin widths that group 
data into only a few bins. A histogram constructed 
with large bin widths will show the distribution as a 
“skyscraper.” This does not give good information 
about variability in the distribution. 

• Avoid histograms with small bin widths that group 
data into lots of bins. A histogram constructed with 
small bin widths will show the distribution as a 
“pancake.” This does not help us see the pattern in 
the data. 

Use the simulation below to answer the questions in the next Learn 
By Doing. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 

These next exercises focus on recognizing the shape of a 
distribution using a histogram. We know that changes in the bin 
width can change the appearance of the distribution. But a 
histogram with an appropriate bin width can give good information 
about the shape of the distribution. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 

116  |  Histograms (2 of 4)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=39#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=39#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=39#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=39#pb-interactive-content


Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=39 
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23. Histograms (3 of 4) 

 

Learning Objectives 

• Describe the distribution of quantitative data using 
a histogram. 

In the next example, we use a histogram to describe the shape, 
center, and spread of the distribution of a quantitative variable. 

Example 

Oscar for Best Actress 

Here we have the ages of the actresses who won an Oscar 
for Best Actress from 1970 to 2001. 

Click here to see the entire data set. 
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Shape: The distribution of ages appears skewed to the 
right. Most of the Oscar winners for Best Actress are young. 
More precisely, we see that 91% (29 of 32) of the winners 
under 50 years of age, and 56% (18 of 32) of the winners are 
under the age of 35. 

Center: The distribution of ages appears to be centered 
between 30 and 35 years; 28% (9 of 32) of the winners are 
in this age range. 

Spread: The data range from about 20 to about 80, so the 
overall range is approximately 60. There is a lot of 
variability in the ages of actresses who have won the Oscar 
for Best Actress. 

Outliers: Winners older than 60 years are unusual. There 
are three outliers: one in each of the following intervals: 
60–65, 70–75, 75–80. 

Now we summarize all of these observations in a 
paragraph: 

Between the years of 1970 and 2001, the Oscar for Best 
Actress was awarded most often to young actresses: 56% 
(18 of 32) of the winners were under the age of 35, with 28% 
(9 of 32) of the winners between 30 and 35 years of age. 
Winners ranged in age from about 20 to about 80, but only 
3 of the 32 were over 60. 
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Here is a paragraph that uses more formal vocabulary to 
summarize the distribution of ages: 

Between the years of 1970 and 2001, the Oscar for Best 
Actress was awarded most often to young actresses. The 
distribution of ages is skewed to the right: 56% (18 of 32) of 
the winners were under the age of 35, with the center of 
the distribution between 30 and 35 years of age. With 
winners ranging in age from about 20 to about 80, the 
overall range of the distribution is about 60. But much of 
this variability is due to three outliers who were older than 
60 when they won the award. 
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24. Histograms (4 of 4) 

 

Learning Objectives 

• Describe the distribution of quantitative data using 
a histogram. 

We now use histograms to compare the distributions of a 
quantitative variable for two groups of individuals. Previously, we 
did a similar comparison using dotplots. As before, our descriptions 
focus on the overall pattern (shape, center, and spread) as well as 
deviations from the pattern (outliers). We also use percentages to 
describe and compare different intervals of variable values, since 
histograms make it easy to do so. 

Example 

Smoking and Birth Weight 

Does smoking during pregnancy have an impact on birth 
weight? To investigate this question, doctors collected data 
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on 189 new mothers who gave birth at a hospital in 
Massachusetts during the 1980s. 

Here we use histograms to compare the distribution of 
birth weights for mothers who smoked during pregnancy 
with mothers who did not smoke. The table shows the 
numbers of mothers with babies in each interval of birth 
weights. (Left endpoints are included in the bin, so a 
1,000-gram baby is in the interval 1,000–1,500 grams.) 

Note: For easy and more accurate visual comparisons, 
both histograms have the same horizontal scale and bin 
width. Also, the scale on the vertical axis is the same. So we 
can directly compare the heights of the bars to compare 
the number of mothers with babies in each interval of birth 
weights. 

Following are some observations about the shape, center, 
and spread: 

Nonsmokers: The distribution of birth weights for the 
nonsmokers appears skewed slightly to the left. We 
estimate that birth weights for this group fall between 
approximately 1,000 and 5,000 grams for an overall range of 
approximately 4,000 grams. For nonsmokers, nearly half of 
the babies have a birth weight between 3,000 and 4,000 
grams (29 + 27 = 56, 56/115 = 48.7%) with fewer babies in the 
lower weight ranges. 
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Smokers: The distribution of birth weights for the 
smokers appears slightly skewed to the right. We estimate 
the birth weights for this group fall between approximately 
500 and 4,500 grams for an overall range of approximately 
4,000 grams. For smokers, nearly half of the babies have a 
birth weight between 2,000 and 3,000 grams (16 + 22 = 38, 
38 / 74 = 51%) with fewer babies in heavier weight ranges. 

Comment: As we have seen, the choice of bin width can 
affect the shape of a histogram. We also cannot make 
precise statements about center and spread because our 
sense of “typical” range is also affected by the choice of bin 
width. 

Another strategy for comparing distributions is to use a 
benchmark. Here are some examples: 

1. Doctors define low birth weight as a birth weight 
below 2,500 grams. Calculate and compare the 
percentage of smokers and nonsmokers with low-
birth-weight babies by this definition.Nonsmokers: Of 
babies born to mothers who did not smoke, 
3 + 8 + 18 = 29 weighed less than 2,500 grams, so 
25.2% (29 of 115) of the babies born to nonsmokers fit 
the definition of low birth weight.Smokers: Of babies 
born to mothers who smoked, 1 + 1 + 6 + 22 = 30 
weighed less than 2,500 grams, so 40.5% (30 of 74) of 
the babies born to smokers fit the definition of low 
birth weight. 

2. A condition called macrosomia (also known as big 
baby syndrome) is defined as a birth weight of 4,000 
grams or more. Calculate and compare the 
percentage of smokers and nonsmokers with babies 
that fit the definition of macrosomia.Nonsmokers: Of 
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babies born to mothers who did not smoke, 6 + 2 = 8 
weighed 4,000 grams or more, so 7.0% (8 of 115) of the 
babies born to nonsmokers fit the definition of 
macrosomia.Smokers: Of babies born to mothers who 
smoked, only 1 weighed 4,000 grams or more, so 1.4% 
(1 of 74) of the babies born to smokers fit the 
definition of macrosomia. 

Now we synthesize these observations into a paragraph. 

Tip: Be sure to emphasize the comparison of the groups. 
Develop a thesis statement if appropriate. 

In this observational study, we compared mothers who 
smoked during pregnancy to mothers who did not smoke 
during pregnancy. The variable is the birth weights of their 
babies. Both groups had a lot of variability in birth weights, 
with identical overall range estimates of 4,000 grams. 

There was also a lot of overlap in the distributions. 
Nonsmokers had babies that weighed between 
approximately 1,000 and 5,000 grams. Smokers had babies 
that weighed between approximately 500 and 4500 grams. 

However, we also observe some important differences in 
the typical ranges of birth weights for the two groups. For 
nonsmokers, nearly half of the babies have a birth weight 
between 3,000 and 4,000 grams (56 out of 115, 48.7%) with 
fewer babies in the lower weight ranges. For smokers, 
nearly half of the babies have a birth weight between 2,000 
and 3,000 grams (40 of 74, 54%) with fewer babies in 
heavier weight ranges. 

If we use the medical definition of low birth weight 
(under 2,500 grams), we see that smokers in this study have 
a much higher incidence of low birth weights: 25.2% (29 of 
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115) of the babies born to nonsmokers fit the definition of 
low birth weight, compared to 40.5% (30 of 74) of the babies 
born to smokers. In this study, smoking is associated with 
lower birth weights, though the variability in the data 
suggests that other variables also contribute to birth 
weight. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=41 

 
 

Let’s Summarize 

In “Distributions for Quantitative Data,” we focused on describing 
the distribution of a quantitative variable. 
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• In a graph that summarizes the distribution of a quantitative 
variable, we can see 

◦ the possible values of the variable. 
◦ the number of individuals with each variable value or 

interval of values. 
• To analyze the distribution of a quantitative variable, we 

described the overall pattern of the data (shape, center, 
spread), and any deviations from the pattern (outliers). 

◦ We described the shape of a distribution as left-skewed, 
right-skewed, symmetric with a central peak (bell-shaped), 
or uniform. Not all distributions have a simple shape that 
fits into one of these categories. 

◦ The center of a distribution is a typical value that 
represents the group. We discuss ways to identify the 
center of a distribution in “Measures of Center.” 

◦ The spread of a distribution is a description of how the 
data varies. One measurement of spread is the overall 
range of the data (largest value – smallest value). We also 
looked at a typical range of values. We discuss ways to 
identify a typical range in “Quantifying Variability Relative 
to the Median” and “Quantifying Variability Relative to the 
Mean.” 

◦ Outliers are data points that fall outside the overall pattern 
of the distribution. 

• We used two types of graphs to analyze the distribution of a 
quantitative variable: 

◦ Dotplots 
◦ Histograms 

• Following are some observations about dotplots: 

◦ Individual variable values are visible, particularly when the 
data set is small. 

◦ Descriptions of shape, center, and spread are not affected 
by how the dotplot is constructed. 

◦ We can accurately calculate the overall range (largest value 
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– smallest value). 
• Following are some observations about histograms: 

◦ Individual variable values are not visible. 
◦ Grouping individuals into bins of equal-sized intervals is 

particularly useful when analyzing large data sets. 
◦ We can easily use percentages, also called relative 

frequencies, to describe the distribution. 
◦ Descriptions of shape, center, and spread are affected by 

how the bins are defined. 
• How do we decide when to use a dotplot and when to use a 

histogram? There are no rules here. Each type of graph can 
highlight different aspects of the data. 
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25. Introduction: Measures of 
Center 

What you’ll learn to do: Use mean and median to 
describe the center of a distribution. 

LEARNING OBJECTIVES 

• Use mean and median to describe the center of a 
distribution. 

Introduction: Measures of
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26. Mean and Median (1 of 2) 

 

Learning Objectives 

• Use mean and median to describe the center of a 
distribution. 

Recall that when we describe the distribution of a quantitative 
variable, we describe the overall pattern (shape, center, and spread) 
in the data and deviations from the pattern (outliers). In our 
previous discussion of patterns in quantitative data, we identified 
a typical value in the distribution. We used this single value of the 
variable to represent the entire group. This is an informal way to 
think about the center of the distribution. In “Measures of Center,” 
we focus on describing the center of a distribution more precisely. 

We develop two different measurements for identifying the 

130  |  Mean and Median (1 of 2)



center of a distribution: the mean and the median. Each measure 
has special properties. 

Mean 

The mean is the average. It is written as  and pronounced “x-bar.” 
To calculate the mean, we add the data values and divide by the 
number of data points. 

We can write this as a formula. 

In this formula, the symbol  means sum (add up the values). The 
x represents the data values. The letter “n” represents the number 
of data values. 

Example 

Calculating the Mean 

Let’s find the mean of a set of three quiz scores: 70, 85, 
82. In this situation, n is 3 because there are 3 quiz scores. 
We add the “x” values, 70 + 85 + 82 to get 237, then divide by 
3 to get a mean of 79. 

We could write this calculation using the formula: 
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Example 

Average Homework Score 

Suppose Beth’s homework scores are70, 80, 80, 80, 85, 86, 
90, 90, 95. There is variability in her homework scores, but 
the mean represents her typical performance on 
homework. 

The mean of her scores is 

So Beth’s performance on homework varies, but on 
average, she makes an 84 on each assignment. In other 
words, we can understand the mean as the score Beth 
would have on every assignment if she always made the 
same grade – that is, if she made an 84 on all nine 
homework assignments. 

Her mean score is 84, since 

From this viewpoint, the mean is the fair share measure 
of center. 

Notice, however, that Beth did not actually make an 84 on 
any assignment. The mean does not give us information 
about any individual homework score or about how the 
homework scores vary. It only gives us a sense of her 
performance by averaging the values across all the 
assignments. 
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Here is the mean marked on a dotplot of the distribution 
of homework scores. For this set of scores, the mean 
appears to be a pretty good measure of how Beth 
performed overall. 

The mean is also referred to as the balancing point of a 
distribution. If we measure the distance between each data 
point and the mean, the distances are balanced on each 
side of the mean. 

For example, a homework score of 95 is 11 points above 
the mean, as shown. 

A homework score of 80 is 4 points below the mean. In 
the table, we calculate the sum of the distances above and 
below the mean. Notice that the sum of the distances above 
and below the mean are equal. In this way, the mean is a 
balancing point for the distribution. 

We can also view the distances below the mean as 
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negative and the distances above the mean as positive. 
When we add these “signed” distances together, we get 0 

(−14) + (−4) + (−4) + (−4) + 1 + 2 + 6 + 6 + 11 

(−26) + 26 

The mean is the only measure of center with this special 
property. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=43 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=43 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=43 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=43 

Median 

The median is another way to identify a typical value. The median 
is the middle of the data when all the values are listed in order. The 
median divides the data into two equal-sized groups. There is as 
much data below the median as above it. 
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Example 

Median Homework Score 

Let’s return to Beth’s homework scores: 70, 80, 80, 80, 85, 
86, 90, 90, 95. 

The median score is 85. This is the center score. There 
are four homework scores below 85 and four homework 
scores above 85. 

For this data set, the median was one of the homework 
scores. This will not always be the case. So, like the mean, 
the median does not give us information about any 
individual homework score or about how the homework 
scores vary. It only gives us a sense of Beth’s performance 
by locating a value that is the middle of the actual scores. 

Here is the median marked on a dotplot of the 
distribution of homework scores. For this set of scores, the 
median is also a pretty good measure of how Beth 
performed overall. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=43 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=43 
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27. Mean and Median (2 of 2) 

 

Learning Objectives 

• Use mean and median to describe the center of a 
distribution. 

Choosing between Median and Mean 

We now have a choice between two measurements of center. We 
can use the median, or we can use the mean. How do we decide 
which measurement to use? 

In these next examples, we learn that the shape of the distribution 
and the presence of outliers helps us answer this question. 

Example 

Homework Scores with an Outlier 

Here is a dotplot of the 26 homework scores earned by a 
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student. Notice that the distribution of scores has an 
outlier. This student typically scores between 80 and 90 on 
homework, but there is one score of 0. Which 
measurement of center gives a better summary of this 
distribution? 

• Median = 84.5 
• Mean = 81.8 

Both measures of center are in the B grade range, but the 
median is a better summary of this student’s homework 
scores. The outlier does not affect the median. This makes 
sense because the median depends primarily on the order 
of the data. Changing the lowest score does not affect the 
order of the scores, so the median is not affected by the 
value of this point. 

The mean is not a good summary of this student’s 
homework scores. The outlier decreases the mean so that 
the mean is a bit too low to be a representative measure of 
this student’s typical performance. This makes sense 
because when we calculate the mean, we first add the 
scores together, then divide by the number of scores. Every 
score therefore affects the mean. 

Note: In the distribution above, there are 26 homework 
scores for this student. If the teacher made fewer 
homework assignments, a zero would have a greater impact 
on the mean. We can see this in the distribution below. This 
distribution has only 10 scores. The one grade of 0 moves 
the mean into the C grade range. 
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Example 

Skewed Incomes 

In this example, we look at how skewness in a data set 
affects the mean and median. The following histogram 
shows the personal income of a large sample of individuals 
drawn from U.S. census data for the year 2000. Notice that 
it is strongly skewed to the right. This type of skewness is 
often present in data sets of variables such as income. 
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The mean and median for this data set are 

• Mean = $24,000 
• Median = $16,900 

Here again we see that the mean income does not 
represent the typical income for this sample very well. The 
small number of people with higher incomes increase the 
mean. The mean is too high to represent the large number 
of people making less than $20,000 a year. A small number 
of high incomes gives the misleading impression that the 
typical income in the sample is $24,000. The small number 
of people with higher incomes does not impact the median, 
so the median income of $16,900 better represents the 
typical income in this sample. 
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What’s the Main Point? 

These examples illustrate some general guidelines for choosing a 
measure of center: 

• Use the mean as a measure of center only for distributions that 
are reasonably symmetric with a central peak. When outliers 
are present, the mean is not a good choice. 

• Use the median as a measure of center for all other cases. 

Both of these examples also highlight another important principle: 
Always plot the data. 

We need to use a graph to determine the shape of the 
distribution. By looking at the shape, we can determine which 
measures of center best describe the data. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=44 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=44 

Instructions for using the simulation: 

• To add a point, move the slider to the value you want, then 
click Add. 

• To remove a point, move the slider to the value you want, then 
click Minus. 

• To reset the simulation, click the button in the upper left 
corner that says Reset. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=44 
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Let’s Summarize 

• We have two different measurements for determining the 
center of a distribution: mean and median. When we use the 
term center, we mean a typical value that can represent the 
distribution of data. 

• The mean is the average. We calculate the mean by adding the 
data values and dividing by the number of individual data 
points. 

• The mean has the following properties: 

◦ It is the fair-share measure. For example, imagine that you 
have 10 homework scores. Say that your scores vary, but 
the mean is 84. Then you have 84(10) = 840 points, which is 
like having an 84 on each of the 10 assignments. 

◦ The mean is also referred to as the balancing point of a 
distribution. If we measure the distance between each 
data point and the mean, the distances are balanced on 
each side of the mean. 

• The median is the physical center of the data when we make an 
ordered list. It has the same number of values above it as below 
it. 

• General Guidelines for Choosing a Measure of Center 

◦ Use the mean as a measure of center only for distributions 
that are reasonably symmetric with a central peak. When 
outliers are present, the mean is not a good choice. 

◦ Use the median as a measure of center for all other cases. 
• Always plot the data. We need to use a graph to determine the 

shape of the distribution. By looking at the shape, we can 
determine which measures of center best describe the data. 
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28. Introduction: Measures of 
Spread 

What you’ll learn to do: Use a five-number 
summary and a boxplot to describe a 
distribution. 

LEARNING OBJECTIVES 

• Use a five-number summary and a boxplot to 
describe a distribution. 
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29. Interquartile Range and 
Boxplots (1 of 3) 

 

Learning Objectives 

• Use a five-number summary and a boxplot to 
describe a distribution. 

Introduction 

Recall that when we describe the distribution of a quantitative 
variable, we describe the overall pattern (shape, center, and spread) 
in the data and deviations from the pattern (outliers). In 
“Distributions for Quantitative Data” and “Measures of Center,” we 
focused on describing the shape and center of a distribution. We 
also investigated how the shape influences our choice of 
measurements of center. In “Quantifying Variability Relative to the 
Median” and Quantifying Variability Relative to the Mean,” we focus 
on describing the spread of a distribution more precisely. 
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We begin with describing spread about the median. 

Example 

Two Sets of Exam Scores 

Consider the following two distributions of exam scores: 

Both distributions have a median of 74.5. Which 
distribution has more variability? 

The answer to this question depends on how we measure 
variability. Both distributions have the same range. The 
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range is the distance spanned by the data. We calculate the 
range by subtracting the minimum value from the 
maximum value. 

• Range = Maximum value – minimum value 

For both of these data sets, the range is 55 (here is how 
we calculated the range: 95 – 40 = 55). If we use the range 
to measure variability, we say the distributions have the 
same amount of variability. 

But the variability in the distributions differ when we 
look at how the data is distributed about the median. Set A 
has a large portion of its data close to the median. This is 
not true for Set B. From this viewpoint, Set A has less 
variability about the median. 

Now we develop a way to measure the variability about the median. 
To do so, we use quartiles. Quartile marks divide the data set into 
four groups with equal counts. 

Example 

Quartiles and the Interquartile Range 

We added dividers to show the quartile marks for the two 
sets of exam scores. Quartile marks divide the data set into 
four subgroups with the same number of individuals in 
each subgroup. 
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Notice: For a data set, there is an equal amount of data in 
each quartile. 

• Class A has 32 scores, so each quartile contains 
eight scores (32 ÷ 4 = 8). 

• Class B has 20 scores, so each quartile contains five 
scores (20 ÷ 4 = 5). 

The quartiles together with the minimum and maximum 
scores give the five-number summary: 

• Class A: Min: 40 Q1: 71 Q2: 74.5 Q3: 78.5 Max: 95 
• Class B: Min: 40 Q1: 61 Q2: 74.5 Q3: 89 Max: 95 

Notice: The second quartile mark (Q2) is the median. 

Notice: Some quartiles exhibit more variability in the data 
even though each quartile contains the same amount of 
data. 

• For example, 25% of the scores in Class A are 
between 40 and 71. There is a lot of variability in this 
first quartile (Q1). The eight scores in Q1 vary by 30 
points. 

• Compare this to the third quartile (Q3) for Class A: 
25% of the scores in Class A are between 74.5 and 
78.5. There is not much variability in Q3. The 8 scores 
in Q3 vary by only 4 points. 

How are quartiles used to measure variability about the 
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median? The interquartile range (IQR) is the distance 
between the first and third quartile marks. The IQR is a 
measurement of the variability about the median. More 
specifically, the IQR tells us the range of the middle half of 
the data. 

Here is the IQR for these two distributions: 

• Class A: IQR = Q3 – Q1 = 78.5 – 71 = 7.5 
• Class B: IQR = Q3 – Q1 = 89 – 61 = 28 

As we observed earlier, Class A has less variability about 
its median. Its IQR is much smaller. The middle 50% of 
exam scores for Class A vary by only 7.5 points. The middle 
50% of exam scores for Class B vary by 28 points. 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=46 

Interquartile Range and Boxplots (1 of 3)  |  151

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=46#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=46#pb-interactive-content


Using the IQR to Identify Outliers 

We consider a point an outlier when it is substantially above Q3 or 
substantially below Q1. To make this statement more precise, we 
mark off a distance of 1.5 IQRs above Q3 and below Q1. Any point 
outside of this range is considered an outlier. 

We can write this idea as a formula: 
A value is an outlier when 

• the value is greater than Q3 + 1.5 * IQR or 
• the value is less than Q1 – 1.5 * IQR 

To make more sense of this rule, let’s look at a visual example. 

Example 

Using IQR to Identify Outliers 

For the data set in the dotplot, Q1 = 15 and Q3 = 18, so the 
IQR = 18 – 15 = 3. 

• Q1 – 1.5 * IQR = 15 – 1.5 * 3 = 15 – 4.5 = 10.5 

◦ This cutoff is shown in green on the dotplot. 
◦ The data point at 10 is considered an outlier 

because it is below 10.5. 

• Q3 + 1.5 * IQR = 18 + 1.5 * 3 = 18 + 4.5 = 22.5 

◦ This cutoff is shown in red on the dotplot. 
◦ The data points at 24, 27, and 29 are 
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considered outliers because they are above 
22.5. 

The points in purple are outliers by the IQR definition. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=46 

Let’s Summarize 

• The range measures the variability of a distribution by looking 
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at the interval covered by all the data. The IQR measures the 
variability of a distribution by giving us the interval covered by 
the middle 50% of the data. 

• The five-number summary of a distribution consists of the 
minimum, quartile 1, median, quartile 3, and maximum. 

• The IQR is the measure of spread we should use when using 
the median to measure center. 

• When using the median and IQR to measure center and 
spread, a data point is considered an outlier if it satisfies one of 
the following conditions. 

◦ The data value is more than 1.5 IQRs greater than Q3 (i.e., 
the value is greater than Q3 + 1.5 * IQR) 

◦ The data value is more than 1.5 IQRs less than Q1 (i.e., the 
value is less than Q1 − 1.5 * IQR) 
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30. Interquartile Range and 
Boxplots (2 of 3) 

 

Learning Objectives 

• Use a five-number summary and a boxplot to 
describe a distribution. 

Introduction 

On the previous page, we learned about the five-number summary. 
At this point, you should know the following: 

• The five-number summary uses quartiles to identify the center 
and spread of a distribution. 

• The median (which is Q2) is a measure of center. We also view 
the median as a typical value that represents the distribution. 

• The values between Q1 and Q3 give a typical range of values. 
• The IQR is a way to measure the variability about the median. 

Now we use the five-number summary to make a new type of 
graph, the boxplot. Boxplots are commonly used to summarize a 
distribution of a quantitative variable. 
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Example 

Boxplots for Exam Scores 

Here are the two sets of exam scores from the previous 
example. Recall that we divided the data into quartiles. In a 
data set, each quartile contains the same number of scores. 
In other words, each quartile contains 25% of the data. 

Here is the five-number summary for these two 
distributions: 

• Class A: Min: 40 Q1: 71 Q2: 74.5 Q3: 78.5 Max: 95 
• Class B: Min: 40 Q1: 61 Q2: 74.5 Q3: 89 Max: 95 

To create the boxplot for each distribution, 

• Draw a box from Q1 to Q3. 
• Draw a vertical line in the box at the median. 
• Extend a tail from Q1 to the smallest value that is 

not an outlier and from Q3 to the largest value that is 
not an outlier. 

• Indicate outliers with asterisks (*). 
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Notice: A long box in the boxplot indicates a large IQR, so 
the middle half of the data has a lot of variability. A short 
box in the boxplot indicates a small IQR. In this case, the 
middle half of the data has little variability. 

Frequently, side-by-side boxplots are drawn vertically. 
Here we drew vertical dotplots with their boxplots for the 
exam scores from the two classes. 
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Note: Some statistical packages offer two options: a 
boxplot and a modified boxplot. We drew modified boxplots 
in this example. In a modified boxplot, outliers are marked 
with an asterisk (*). For a boxplot that is not modified, the 
tails extend to the minimum and maximum values. In this 
type of boxplot, we cannot see outliers. 

Making a Boxplot: 

Now we walk through the steps for making a modified boxplot 
using the distribution of ages for winners of the Oscar Award for 
Best Actress from 1970 to 2001. The five-number summary for this 
distribution is 

• Min: 21 Q1: 32 Median: 35 Q3: 41.5 Max: 80 

Using the IQR definition of an outlier, there are three outliers: 61, 74, 
and 80. 
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A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=47 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=47 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=47 

 
At this point, you should know how to 

• Create a boxplot from a five-number summary. 
• Use a boxplot to identify and interpret quartiles. 
• Identify the median and the IQR of a distribution from a 

boxplot. 

Now we want to focus on what a boxplot does not tell us. A boxplot 
does not give us information about the following: 

• The number of data points in the data set. 
• The number of data points within each quartile (though each 

quartile contains the same number of data points). 
• The pattern of the data within each quartile. 
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Here are four data sets that illustrate these ideas. 

How are these data sets similar? Notice that the four data sets 
have the same boxplot. This is because the five-number summary is 
the same for each data set. The data sets have identical minimum 
value, maximum value, and quartile marks, so we could say that 
these data sets have the same center and spread. 

• Center: Each data set has a median of 10. 
• Spread: In each data set, the middle half of the data varies from 

7 to 14, so the IQR is 7. In each data set, the data varies from 4 
to 19, so the overall range is 15. 

How are these data sets different? The data sets do not have the 
same number of data points. Also, the shape of each distribution is 
different. 

The goal of the next Learn By Doing activity is to develop a deeper 
understanding of how the interquartile range (IQR) measures 
variability about the median. Use the simulation below for the next 
activity. You have used a similar simulation before. Recall the 
instructions for adding or removing data points: 

• To add a point, move the slider to the value you want, then 
click Add. 

• To remove a point, move the slider to the value you want, then 
click Minus. 

• To reset the simulation, click the button in the upper left 
corner that says Reset. 
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Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=47 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=47 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=47 
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31. Interquartile Range and 
Boxplots (3 of 3) 

 

Learning Objectives 

• Use a five-number summary and a boxplot to 
describe a distribution. 

Comparing Distributions with Side-by-Side 
Boxplots 

In the next two examples, we again use boxplots to compare two 
distributions. This time we focus on writing a description of the 
two distributions. We practiced writing descriptions in the earlier 
section, “Distributions for Quantitative Data,” using dotplots and 
histograms. Now we use boxplots. As before, we describe shape, 
center, spread, and outliers. But now we use the five-number 
summary to make our descriptions more precise. 
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Example 

Best Actor/Actress Oscar Winners 

So far we have examined the age distributions of Oscar 
winners for males and females separately. 

It will be interesting to compare the age distributions of 
actors and actresses who won best acting Oscars. To do 
that, we look at side-by-side boxplots of the age 
distributions by gender. 

• Actors: Min = 31, Q1 = 37.75, M = 42.5, Q3 = 48.75, 
Max = 76 

• Actresses: Min = 21, Q1 = 32, M = 35, Q3 = 41.5, Max = 
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80 

Based on the graph and numerical measures, we can 
make the following comparison between the two 
distributions: 

Note: A good summary compares the two distributions 
using shape, center, spread, and outliers. Let’s begin with 
observations about these characteristics of the 
distributions. 

Shape: The shape of a distribution can be hard to 
determine from the boxplot, but we can compare the 
variability in the upper half of the data (Max − Median) to 
the variability in the lower half of the data (Median − Min) to 
get a sense of shape. For the men, the distribution appears 
skewed to the right because the lower half of the data has 
less variability than the upper half. The lower half of the 
data has a range of 11.5 years (42.5 − 31), compared to the 
upper half of the data with a range of 33.5 years (76 − 42.5). 
The distribution for women also appears right-skewed. The 
lower half of the data has a range of 14 years (35 − 21), 
compared to a range of 45 years for the upper half of the 
data (80 − 35). In both cases, the shape suggests that the 
Oscar is awarded to younger actors and actresses. 

Center: Actresses tend to win the Oscar at a younger age 
than do actors. The median age for females (35) is lower 
than for the males (42.5). Note also that the third quartile of 
the females’ distribution (41.5) is lower than the median age 
for males. It tells us that only 25% of the actresses were 41.5 
years old or older when they won the Oscar, compared to 
50% of the males who were 42.5 years old or older. 

Spread: Not only do actresses win at a younger age, but 
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the Oscar is awarded more consistently to younger 
actresses, as we can see by comparing the interquartile 
ranges. There is less variability in the middle half of the 
actresses’ ages (IQR = 9.5) than in the actors’ ages (IQR = 11). 
On the other hand, the actresses have more variability in 
their overall ages (range = 59) compared to the actors 
(range = 45). 

Outliers: We see that we have outliers in both 
distributions. There is only one high outlier in the actors’ 
distribution (76, Henry Fonda, On Golden Pond), compared 
with three high outliers in the actresses’ distribution. 

Now let’s pull these observations together into a paragraph. 
A good paragraph compares the two distributions and uses 
observations about the distributions to support a central 
thesis. 

In general, actresses win the Best Actress Oscar at a 
younger age than do actors. The median age for actresses is 
35, compared to 42.5 for actors. Not only do actresses win 
at a younger age, the Oscar is awarded more consistently to 
younger actresses, as seen when we compare the 
interquartile ranges. There is less variability in the middle 
half of the actresses’ ages (IQR = 9.5) than in the actors’ ages 
(IQR = 11). Both distributions have older winners that are 
outliers. These older winners are unusual and skew the 
distribution of ages to the right. 
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Example 

Temperature of Pittsburgh vs. San 
Francisco 

To compare the average high temperatures of Pittsburgh 
to those of San Francisco, we look at the following side-by-
side boxplots and supplement the graph with the 
descriptive statistics of each of the two distributions. 
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When looking at the graph, the similarities and 
differences between the two distributions are striking. Both 
distributions have roughly the same center (medians are 
61.4 for Pittsburgh and 62.7 for San Francisco). However, the 
temperatures in Pittsburgh have a much larger variability 
than the temperatures in San Francisco (Range: 49 vs. 12; 
IQR: 36.5 vs. 5). 

The practical interpretation of the results we obtained is 
that the weather in San Francisco is much more consistent 
than the weather in Pittsburgh, which varies a lot during 
the year. Also, because the temperatures in San Francisco 
vary so little during the year, knowing that the median 
temperature is around 63 is actually very informative. On 
the other hand, knowing that the median temperature in 
Pittsburgh is around 61 is practically useless, since 
temperatures vary so much during the year and can get 
much warmer or much colder than in San Francisco. 

Note that this example provides more intuition about 
variability by interpreting small variability as consistency 
and large variability as lack of consistency. Also, through 
this example, we learned that the center of the distribution 
is more meaningful as a typical value for the distribution 
when there is little variability (or, as statisticians say, little 
“noise”) around it. When there is large variability, the center 
loses its practical meaning as a typical value. 
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Let’s Summarize 

• The range measures the variability of a distribution by looking 
at the interval covered by all the data. The IQR measures the 
variability of a distribution by giving us the interval covered by 
the middle 50% of the data. 

• The five-number summary of a distribution consists of the 
minimum, quartile 1, median, quartile 3, and maximum. 

• The IQR is the measure of spread we should use when using 
the median to measure center. 

• When using the median and IQR to measure center and 
spread, a data point is considered an outlier if it satisfies one of 
the following conditions. 

◦ More than 1.5 IQRs greater than Q3 (i.e., the value is 
greater than Q3 + 1.5 * IQR). 

◦ More than 1.5 IQRs less than Q1 (i.e., the value is less than 
Q1 – 1.5 * IQR). 

• The boxplot is a graphical representation of a data set. It 
displays the five-number summary and highlights any points 
that are considered outliers (using the 1.5 * IQR rule described 
in the previous bullet). 

• Side-by-side boxplots are commonly used to compare two 
data sets. 
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32. Introduction: Describing a 
Distribution 

What you’ll learn to do: Describe a distribution 
using mean and standard deviation 

LEARNING OBJECTIVES 

• Use mean and standard deviation to describe a 
distribution. 
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33. Standard Deviation (1 of 4) 

 

Learning Objectives 

• Use mean and standard deviation to describe a 
distribution. 

Introduction 

In the section “Distributions for Quantitative Data,” we discussed 
the spread of a distribution in terms of a typical range of values. In 
“Quantifying Variability Relative to the Median,” we made this idea 
more precise with the interquartile range, IQR. The IQR gives us a 
measure of spread about the median. We defined a typical range of 
values about the median as the values between the first and third 
quartiles. 

Now we want to develop a numerical measure of spread that we 
can use with the mean. In constructing a measure of spread about 
the mean, we want to compute how far a “typical” number is away 
from the mean. 
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Measuring Spread about the Mean 

Let’s consider the sample data set 2, 2, 4, 5, 6, 7, 9. The mean of this 
data set is 

Here is a dotplot of this data set with the mean marked by the 
vertical blue line. 

We can see that some data is close to the mean and some data is 
further from the mean. 

Since we want to see how the data points deviate from the mean, 
we determine how far each point is from the mean. We compute 
the difference between each of these values and the mean. These 
differences are called the deviations from the mean for each point. 

2 − 5 = −3 

2 − 5 = −3 

4 − 5 = −1 

5 − 5 = 0 

6 − 5 = 1 

7 − 5 = 2 

9 − 5 = 4 

When visualized on a dotplot, these differences are viewed as 
distances between each point and the mean. A negative difference 
indicates that the data point is to the left of the mean (shown in 
blue on the graph below). A positive difference indicates that the 
data point is to the right of the mean (shown in green on the graph 
below). 
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Our goal is to develop a single measurement that summarizes a 
typical distance from the mean. Before we continue, let’s practice 
determining the distance of a single data point from the mean. 

Learn By Doing 

The two questions below refer to the following dotplot. 
The mean is 9 and it is marked by the vertical blue line. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 

Since we want to determine how far a typical number is away from 
the mean, we might try to average these numbers. However, if we 
add them all up, we will get 0 (try it). Getting 0 with this procedure 
(finding differences from mean and adding them all together) is no 
accident – it always produces 0. We have to overcome this problem. 

Recall that we are trying to find the typical distance between data 
points and the mean. It therefore makes sense to take the absolute 
value of each of these differences. 

| 2 − 5 | = | −3 | = 3 

| 2 − 5 | = | −3 | = 3 

| 4 − 5 | = | −1 | = 1 

| 5 − 5 | = | 0 | = 0 

| 6 − 5 | = | 1 | = 1 

| 7 − 5 | = | 2 | = 2 

| 9 − 5 | = | 4 | = 4 

Now we can compute the average of these deviations. There are 
seven data points, so we add these seven distances and divide by 7. 
The result is a measure of spread about the mean called the average 
deviation from the mean (ADM). 
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We can indicate this average deviation on a dotplot with a graphic 
similar to a boxplot as follows. 

The shaded box in the middle is centered at the mean. It extends 
left and right a distance of 1 average deviation from the mean. 
Because the average deviation about the mean for this data set is 
2, the box starts at 3 (because 5 − 2 = 3) and ends at 7 (because 5 
+ 2 = 7). In this way, we can use the ADM to define a typical range 
of values about the mean. Notice that this typical range of values 
(within 1 ADM of the mean) contains more than half of the values in 
the data set. 

The goal of the next Learn By Doing exercise is to improve our 
intuition of what the ADM measures. We use the following 
simulation to investigate how the ADM responds to changes in a 
data set. 

Instructions for adding or removing data points: 

• To add a point, move the slider to the value you want, then 
click the + sign. 

• To remove a point, move the slider to the value you want, then 
click the – sign. 

• To reset the simulation to a blank screen, click the button in 
the upper left corner that says Reset. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 

Before we continue, let’s summarize our main points: 

• The ADM (average distance from the mean) is a measurement 
of spread about the mean. More precisely, ADM measures the 
average distance of the data from the mean. 

• We can use the ADM to define a typical range of values about 
the mean. We mark the mean, then we mark 1 ADM below the 
mean and 1 ADM above the mean. This interval is centered at 
the mean and captures typical values about the mean. 

Using these two ideas, we can estimate the ADM by looking at a 
graph of the distribution of data. We practice this important skill in 
the next Learn By Doing. 

Standard Deviation (1 of 4)  |  177

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=50#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=50#pb-interactive-content


Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=50 

In the next example, we compare the ADM as a measure of spread 
to the other ways we have measured spread. 
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Example 

Measuring Variability in Different Ways 

The following dotplots show the potassium content in 76 
cereals. Compare children’s cereals to adult cereals. Which 
type of cereal has more variability in potassium content? 

We can visually see that there is more variability in the 
potassium content of the adult cereals than in the 
children’s cereals. We can measure this spread in three 
ways: 

• Using overall range: The range of potassium 
content is larger for the adult cereals than for the 
children’s cereals. The children’s cereal set has a 
range of 90 (because 110 − 20 = 90), whereas the adult 
cereal set has a range of 315 (because 330 − 15 = 315). 
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• Using IQR: The IQR of the adult cereal set is larger 
than the IQR of the children’s cereal set. The adult 
cereal set has an IQR of 80, since for that set Q1 = 80 
and Q3 = 160. The children’s cereal set has an IQR of 
30, since for that set Q1 = 35 and Q3 = 65. Notice here 
we use the median as a measure of center. The 
median is marked with a red line. IQR measures 
spread about the median. 

• Using ADM: The children’s cereal data set has an 

180  |  Standard Deviation (1 of 4)



ADM of 22. The adult cereal data set has an ADM of 
55. Notice here we use the mean as a measure of 
center. The mean is marked with a blue line. ADM 
measures spread about the mean. 

Based on the preceding example, we might expect the data set with 
the larger range to also have the larger ADM. This is not true, as we 
illustrate in the next example. 

Example 

Comparing Range and ADM 

Which data set has more variability? Our answer to this 
question depends on how we measure variability. 
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We can see that the overall range is larger for data set b. 

• Data set a: range = 100 − 0 = 100 
• Data set b: range = 200 − 0 = 200 

If we use overall range to measure spread, we will say 
that data set b has more variability. 

Does our answer change if we use ADM to measure 
spread? Yes! 

• Data set a: ADM = 41 
• Data set b: ADM = 23 

Most of the data in data set a is located away from the 
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mean, so the ADM is large: 41. Compare this to data set b. 
Most of the data in data set b is located close to the mean, 
so the ADM is small: 23. 

If we use ADM as a measure of spread, we will say that 
data set a has more variability. 

The ADM is a reasonable measure of spread about the mean, but 
there is another measure that is used much more often: the 
standard deviation (SD). The standard deviation behaves very much 
like the average deviation. So all of the work we have done on 
this page is useful in understanding standard deviation. We discuss 
standard deviation next. 
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34. Standard Deviation (2 of 
4) 

 

Learning Objectives 

• Use mean and standard deviation to describe a 
distribution. 

A More Common Measure of Spread about the 
Mean: The Standard Deviation 

The standard deviation (SD) is a measurement of spread about the 
mean that is similar to the average deviation. We think of standard 
deviation as roughly the average distance of data from the mean. In 
other words, the standard deviation is approximately equal to the 
average deviation. We develop the formula for standard deviation in 
the following example. 
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Example 

Calculating the Standard Deviation 

Let’s consider the same data set we used on the previous 
page: 2, 2, 4, 5, 6, 7, 9. We already know that the mean is 5. 
We compute the standard deviation similarly to the way we 
compute the average deviation. We begin by computing the 
deviation of each point from the mean, but instead of taking 
the absolute value of the differences, we square them. Here 
are the steps: 

1. We start by finding the differences between each 

value and the mean (just like before):

2. We square each of the differences:
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3. As before, we find the average of these squared 
differences. We add the squared differences and 
divide by n − 1 (the count minus 1). Note that we 
divide by n − 1 instead of n. (The reason is subtle. We 
do not discuss it in this course.)

4. To scale back the value to account for the squaring 
we did in step 2, we take the square root of the value 
we found in step 3:

Notice that the standard deviation is a little bit larger 
than the average deviation (which was 2). We can get a good 
approximation of the standard deviation by estimating the 
average distance from the mean. The shaded box on the 
following dotplot indicates 1 SD to the right and left of the 
mean. 
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Comment 

The formula for the standard deviation of a data set can be 
described by the following expression. However, we will always use 
technology to perform the actual computation of the standard 
deviation. 

The symbols in the expression are defined as follows: 

• n is the number of values in the data set (the count). 
• Recall that ∑ means to add up (compute the sum). 
•  is the mean of the data set. 
• The individual values are denoted by x. 

Note: In the formula you can see 

• the deviations from the mean . 

• the squaring of these deviations. 
• the averaging of the squared deviations: add them up (∑) and 

divide by (n − 1). 

Before we learn to use technology to compute the standard 
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deviation, we practice estimating it. We can estimate standard 
deviation in the same ways we estimated ADM. Think of standard 
deviation as roughly equal to ADM, so standard deviation is roughly 
the average distance of data from the mean. 

Learn By Doing 

Let’s consider the same collection of cereals we worked 
with previously, except this time we’ll look at the calorie 
content. 

https://assessments.lumenlearning.com/assessments/
3455 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=51 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=51 
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35. Standard Deviation (3 of 
4) 

 

Learning Objectives 

• Use mean and standard deviation to describe a 
distribution. 

What We Know So Far about the Standard 
Deviation 

• The standard deviation is a measure of spread. 
• The standard deviation is approximately the average distance 

of the data from the mean, so it is approximately equal to ADM. 
• Mean ± SD gives a range of typical values. 
• We will use technology to calculate the standard deviation. 

Now we incorporate the standard deviation into our description 
of the pattern in the distribution of a quantitative variable. More 
specifically, we use standard deviation to compare the variability of 
two distributions. 
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Example 

Backpack Weight 

The following histograms show the backpack weight 
carried by two groups of schoolchildren. One is a group of 
first and third graders. The other is a group of fifth and 
seventh graders. In each histogram, we marked the mean 
and a standard deviation above the mean. 

 

Following are some observations about shape, center and 
spread. 

Note: For easy visual comparison, we made the histogram 
bin widths the same. This decision made the histogram of 
pack weights for the fifth and seventh graders a “pancake.” 
For this distribution, a larger bin width will give a more 
accurate sense of shape. However, since our goal is to 
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compare the two groups, we chose to use the same scale 
and bin width for the histograms. 

First and Third Graders 

• Shape: The distribution appears somewhat 
symmetrical with a slight skew to the right. 

• Center and spread: With the use of technology, we 
determined the mean is 5.8 pounds and the standard 
deviation is 2.1 pounds. 

• Typical range of values: A stardard deviation either 
side of the mean gives a range of typical values: 5.8 − 
2.1 = 3.7 and 5.8 + 2.1 = 7.9. So typical first and third 
graders are carrying between 3.7 and 7.9 pounds. 

Fifth and Seventh Graders 

• Shape and deviations from the pattern (outliers): 
The distribution appears somewhat uniform with two 
students who appear to be outliers. 

• Center and spread: With the use of technology, we 
determined the mean is 14.2 pounds and the standard 
deviation is 7.2 pounds. 

• Typical range of values: A standard deviation either 
side of the mean gives a range of typical values: 14.2 − 
7.2 = 7.0 and 14.2 + 7.2 = 21.4. So typical fifth and 
seventh graders are carrying between 7.0 and 21.4 
pounds. 

Here is another view of the same data. The SD hatplot 
marks a standard deviation above and below the mean, so 
the gray rectangle shows us the typical range of backpack 
weights that we calculated previously. 
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Next we summarize our observations with a focus on 
comparing the two groups: 

From this analysis, we can see that the group of students 
in the fifth and seventh grades are carrying more weight on 
average in their backpacks. The mean weight for this group 
is 14.2 pounds compared to 5.8 pounds for the group of first 
and third graders. There is also more variability in backpack 
weights in the fifth- seventh-grade group. The standard 
deviation for this group is 7.2 pounds, compared to 2.1 
pounds for the younger students. 

If we use the standard deviation about the mean to 
identify typical backpack weights, we see that typical older 
students in this sample are carrying between 7 and 21.4 
pounds, compared to typical younger students who are 
carrying between 3.7 and 7.9 pounds. This is consistent with 
what we might expect. 

One plausible explanation is that as children get older, 
they are assigned more homework, so they carry more in 
their backpacks. But at this age, we may also see more 
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students making independent decisions about how much 
homework they will do, so some students will carry more 
books home and others will carry fewer. 

Learn By Doing 

Consider the following two quantitative data sets: 

• Set A: The times (in minutes) of all competitors in 
the 1,500-meter running track-and-field event at the 
most recent Olympic Games. 

• Set B: The times (in minutes) of all competitors in 
the 1,500-meter running track-and-field event at all 
high school meets in the United States last year. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=52 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=52 

Can two data sets have the same mean but different standard 
deviations? Can two data sets have different means but the same 
standard deviation? Use the simulation to investigate these 
questions in the next two activities. 

Instructions for adding or removing data points: 

• To add a point, move the slider to the value you want, then 
click on the + sign. 

• To remove a point, move the slider to the value you want, then 
click on the – sign. 

• To reset the simulation, click the button in the upper left 
corner that says Reset. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=52 
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Activity 1 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=52 
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Activity 2 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=52 

Remark: 
The examples we constructed in the preceding activity should 

make it clear that the mean and standard deviation measure 
independent characteristics of a data set. The mean is a measure 
of center, and the standard deviation is a measure of spread. The 
size of the mean does not give us information about the size of the 
standard deviation. Similarly, the size of the standard deviation does 
not give us information about the size of the mean. 
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36. Standard Deviation (4 of 
4) 

 

Learning Objectives 

• Use mean and standard deviation to describe a 
distribution. 

Deciding Which Measurements to Use 

We now have a choice between two measurements of center and 
spread. We can use the median with the interquartile range, or we 
can use the mean with the standard deviation. How do we decide 
which measurements to use? 

Our next examples show that the shape of the distribution and 
the presence of outliers helps us answer this question. 
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Example 

Homework Scores with an Outlier 

Here are two summaries of the same set of homework 
scores earned by a student: a boxplot and an SD hatplot. 
Notice that the distribution of scores has an outlier. This 
student has mostly high homework scores with one score 
of 0. Here are some observations about the homework data. 

• Five-number summary: low: 0 Q1: 82 Q2: 84.5 Q3: 
89 high: 100 

• Median is 84.5 and IQR is 7 
• Mean = 81.8, SD = 17.6 

The typical range of scores based on the first and third 
quartiles is 82 to 89. 

The typical range of scores based on Mean ± SD is 64.2 to 
99.4 (Here’s how we calculated this: 81.8 – 17.6 = 64.2, 81.8 + 
17.6 = 99.4.) 
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Which is the better summary of the student’s 
performance on homework? 

The typical range based on the mean and standard 
deviation is not a good summary of this student’s 
homework scores. Here we see that the outlier decreases 
the mean so that the mean is too low to be representative 
of this student’s typical performance. We also see that the 
outlier increases the standard deviation, which gives the 
impression of a wide variability in scores. This makes sense 
because the standard deviation measures the average 
deviation of the data from the mean. So a point that has a 
large deviation from the mean will increase the average of 
the deviations. In this example, a single score is responsible 
for giving the impression that the student’s typical 
homework scores are lower than they really are. 

The typical range based on the first and third quartiles 
gives a better summary of this student’s performance on 
homework because the outlier does not affect the quartile 
marks. 

Example 

Skewed Incomes 

In this example, we look at how skewness in a data set 
affects the standard deviation. The following histogram 
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shows the personal income of a large sample of individuals 
drawn from U.S. census data in the year 2000. Notice that it 
is strongly skewed to the right. This type of skewness is 
often present in data sets of variables such as income. 

Following are some summary statistics for this data: 

• Mean = $24,000, SD = $27,500 
• Median = $16,900, IQR = $28,000 

The typical range based on the mean and standard 
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deviation is not a good summary of the distribution of 
incomes. The small number of people with higher incomes 
increases the mean. The mean is too high to represent the 
large number of people making less than $20,000 a year. 
The small number of people with higher incomes also 
increase the standard deviation, so a small number of high 
incomes gives the misleading impression that typical 
incomes in the sample are higher than they really are. 

Notice also that Mean ± SD gives an awkward range of 
typical values. The left endpoint is at −3,500 (Mean − SD = 
24,000 − 27,500 = −3,500), but there are no negative values 
in this data set. This is another reason why it is better to 
use the IQR when measuring the spread of a skewed data 
set. 

Let’s take a look at the same histogram, except this time 
we overlay a boxplot. 

We see that the median represents the typical income of 
people in this sample better than the mean. The small 
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number of people with higher incomes does not impact the 
median or the other quartile marks, so the first and third 
quartile marks give a range of incomes that more 
accurately represent typical incomes in the sample. Notice 
also that this range is always within the overall range of the 
data, so we will never have the problem that we 
encountered earlier with the standard deviation. 

In a skewed distribution, the upper half and the lower 
half of the data have a different amount of spread, so no 
single number such as the standard deviation could 
describe the spread very well. We get a better 
understanding of how the values are distributed if we use 
the quartiles and the two extreme values in the five-
number summary. 

These examples illustrate some general guidelines for choosing 
numerical summaries: 

• Use the mean and the standard deviation as measures of 
center and spread only for distributions that are reasonably 
symmetric with a central peak. When outliers are present, the 
mean and standard deviation are not a good choice. 

• Use the five-number summary (which gives the median, IQR, 
and range) for all other cases. 

Both of these examples also highlight another important principle: 
Always plot the data. 

We need to use a graph to determine the shape of the 
distribution. By looking at the shape, we can determine which 
measures of center and spread best describe the data. 

Standard Deviation (4 of 4)  |  203



Let’s Summarize 

• The average deviation from the mean (ADM) is a measurement 
of spread about the mean. More precisely, ADM measures the 
average distance of the data from the mean. In practice, ADM 
is not commonly used, but it helps us understand the standard 
deviation (SD). 

• The standard deviation is a measure of spread. We use it as a 
measure of spread when we use the mean as a measure of 
center. 

• The standard deviation is approximately the average distance 
of the data from the mean, so it is approximately equal to ADM. 

• We can use the standard deviation to define a typical range of 
values about the mean. We mark the mean, then we mark 1 SD 
below the mean and 1 SD above the mean. This interval is 
centered at the mean and defines typical values about the 
mean. We often write this interval as Mean ± SD. 

• We use technology to calculate the standard deviation. 
• Like the mean, the standard deviation is strongly affected by 

outliers and skew in the data. 

When choosing numerical summaries, 

• Use the mean and the standard deviation as measures of 
center and spread only for distributions that are reasonably 
symmetric with a central peak. When outliers are present, the 
mean and standard deviation are not a good choice. 

• Use the five-number summary (which gives the median, IQR, 
and range) for all other cases. 

• Always plot the data. We need to use a graph to determine the 
shape of the distribution. By looking at the shape, we can 
determine which measures of center and spread best describe 
the data. 
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37. Putting It Together: 
Summarizing Data 
Graphically and Numerically 

 

Let’s Summarize 

In Summarizing Data Graphically and Numerically, we focused on 
describing the distribution of a quantitative variable. 

• To analyze the distribution of a quantitative variable, we 
describe the overall pattern of the data (shape, center, spread) 
and any deviations from the pattern (outliers). We use three 
types of graphs to analyze the distribution of a quantitative 
variable: dotplots, histograms, and boxplots. 

• We described the shape of a distribution as left-skewed, right-
skewed, symmetric with a central peak (bell-shaped), or 
uniform. Not all distributions have a simple shape that fits into 
one of these categories. 

• The center of a distribution is a typical value that represents 
the group. We have two different measurements for 
determining the center of a distribution: mean and median. 

◦ The mean is the average. We calculate the mean by adding 
the data values and dividing by the number of individual 
data points. The mean is the fair share measure. The mean 
is also called the balancing point of a distribution. If we 
measure the distance between each data point and the 
mean, the distances are balanced on each side of the 
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mean. 
◦ The median is the physical center of the data when we 

make an ordered list. It has the same number of values 
above it as below it. 

◦ General Guidelines for Choosing a Measure of Center 

▪ Always plot the data. We need to use a graph to 
determine the shape of the distribution. By looking at 
the shape, we can determine which measure of center 
best describes the data. 

▪ Use the mean as a measure of center only for 
distributions that are reasonably symmetric with a 
central peak. When outliers are present, the mean is 
not a good choice. 

▪ Use the median as a measure of center for all other 
cases. 

• The spread of a distribution is a description of how the data 
varies. We studied three ways to measure spread: range (max – 
min), the interquartile range (Q3 – Q1), and the standard 
deviation. When we use the median, Q1 to Q3 gives a typical 
range of values associated with the middle 50% of the data. 
When we use the mean, Mean ± SD gives a typical range of 
values. 

◦ The interquartile range (IQR) measures the variability in 
the middle half of the data. 

◦ Standard deviation measures roughly the average distance 
of data from the mean. 

• Outliers are data points that fall outside the overall pattern of 
the distribution. When using the median and IQR to measure 
center and spread, we use the 1.5 * IQR interval to identify 
outliers. Specifically, points outside the interval Q1 – 1.5 * IQR 
to Q3 + 1.5 * IQR are labeled as outliers. 
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38. StatTutor: Drinking 
Habits of College Students 

You are now ready to practice what you learned in this module by 
doing a StatTutor exercise. We design StatTutor exercises to help 
you apply what you have learned to a real life data analysis question. 

Instructions: One of the first few screens in StatTutor will have a 
link to download the dataset for this StatTutor exercise. When you 
click that link, a pop-up window will appear asking if you want to 
open or save the file. Make sure you click Save, which will allow you 
to save the file to your hard drive. Then find the downloaded file 
and double-click it to open it if you’re using R, Minitab, Excel, or 
StatCrunch, or transfer it to your calculator if you’re using the TI 
Calculator. 

 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=55 
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39. Assignment: Histogram 

 
We will use the Best Actor Oscar winners (1970–2001) to learn how 

to create a histogram using a statistics package, and practice what 
we’ve learned about describing the histogram. 

Click here to see the entire dataset. 
 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 1: 

Describe the distribution of the ages of the Best Actor Oscar 
winners. Be sure to address shape, center, spread and outliers. 
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40. Assignment: Five-Number 
Summary 

 
In this activity, we will use the Best Actor Oscar winners 

(1970-2001) to: 

• Learn how to use a statistics package to produce the numerical 
measures, or “descriptive statistics” of a distribution. 

• Get some information about the distribution from its five-
number summary. 

Click here to see the entire dataset. 
Choose your statistical package and follow the instructions to 

compute numerical measures. Note that “n” represents the sample 
size, which is the number of individuals in the data set. 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 1: 

Getting information from the output: 
a. How many observations are in this data set? 
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b. What is the mean age of the actors who won the Oscar? 
c. What is the five-number summary of the distribution? 

Question 2: 

Get information from the five-number summary: 
a. Half of the actors won the Oscar before what age? 
b. What is the range covered by all the actors’ ages? 
c. What is the range covered by the middle 50% of the ages? 
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41. Assignment: Boxplot 

 
The objectives of this activity are: 

• To teach you how to use to produce side-by-side boxplots and 
the relevant descriptive statistics, 

• To let you practice comparing and contrasting distributions, 
and 

• To help you gain more intuition about variability through the 
interpretation of your results in context. 

The percentage of each entering Freshman class that graduated on 
time was recorded for each of six colleges at a major university over 
a period of several years. (Source: This data is distributed with the 
software package, Data Desk. (1993). Ithaca, NY: Data Description, 
Inc., and appears in http://lib.stat.cmu.edu/DASL/) 

In order to compare the graduation rates among the different 
colleges, we will create side-by-side boxplots (graduation rate by 
college), and supplement the graph with numerical measures. 
Follow the instructions, and then answer the questions based on the 
output you got. 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 
Answer the following questions: 
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Question 1: 

Compare and contrast the distributions of the graduation rates at 
the different colleges. Be sure to address center, spread and 
outliers. 

Question 2: 

If you had to choose one college among the six colleges based on 
this data, which college would it be? Explain your reasoning. 

Question 3: 

If you were debating between colleges B and F only, which one 
would you choose based on this data? Explain your reasoning. 
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42. Assignment: Standard 
Deviation 

 
The concept of standard deviation is less intuitive as a measure of 

spread than the range or the IQR. The following activity is designed 
to help you develop a better intuition for the standard deviation. 

Background 

At the end of a statistics course, students in three different classes 
rated their instructor on a number scale of 1 to 9 (1 being “very 
poor,” and 9 being “best instructor I’ve ever had”). The following 
table provides three hypothetical rating data: 

 
And here are the histograms of the data: 
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Question 1: 

Assume that the average rating in each of the three classes is 5 
(which should be visually reasonably clear from the histograms), 
and recall the interpretation of the SD as a “typical” or “average” 
distance between the data points and their mean. Judging from 
the table and the histograms, which class would have the largest 
standard deviation, and which one would have the smallest standard 
deviation? Explain your reasoning. 

Now check your intuition by finding the actual standard 
deviations of the three rating distributions. 

Assignment: Standard Deviation  |  215



Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 2: 

What are the standard deviations of the three rating distributions? 
Was your intuition correct? 
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PART III 

CHAPTER 3: EXAMINING 
RELATIONSHIPS: 
QUANTITATIVE DATA 
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43. Why It Matters: 
Examining Relationships: 
Quantitative Data 

 
Before we begin Examining Relationships: Quantitative Data, let’s 

see how the new ideas in this module relate to what we learned 
in the previous modules, Types of Statistical Studies and Producing 
Data and Summarizing Data Graphically and Numerically. 

Recall the Big Picture: 
We begin a statistical investigation with a research question. The 

investigation proceeds with the following steps: 

• Produce Data: Determine what to measure, then collect the 
data. ← Types of Statistical Studies and Producing Data 

• Explore the Data: Analyze and summarize the data. ← 
Summarizing Data Graphically and Numerically, Examining 
Relationships: Quantitative Data 

• Draw a Conclusion: Use the data, probability, and statistical 
inference to draw a conclusion about the population. 

Types of Statistical Studies and Producing Data focused on methods 
for collecting reliable data. Summarizing Data Graphically and 
Numerically focused on summarizing and analyzing data for a 
quantitative variable. In this module, we focus on summarizing and 
analyzing the relationship between two quantitative variables. In the 
Big Picture of Statistics, the material in Examining Relationships: 
Quantitative Data is still part of exploratory data analysis. 

Why It Matters: Examining
Relationships: Quantitative
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44. Introduction: Scatterplots 

What you’ll learn to do: Use a scatterplot to 
display the relationship between two quantitative 
variables. Describe the overall pattern (form, 
direction, and strength) and striking deviations 
from the pattern. 

LEARNING OBJECTIVES 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 
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45. Scatterplots (1 of 5) 

 

Learning Objectives 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

Example 

Highway Signs 

A research firm conducts a study to explore the 
relationship between a driver’s age and the driver’s ability 
to read highway signs. The subjects are a random sample of 
30 drivers between the ages of 18 and 82. (SOURCE: JESSICA 
M. UTTS AND ROBERT F. HECKARD, MIND ON STATISTICS 

[BROOKS/COLE, 2002]. ORIGINAL SOURCE: DATA COLLECTED 
BY THE LAST RESOURCE, INC., BELLFONTE, PA.) 

Because the purpose of this study is to explore the effect 
of age on the driver’s ability to read highway signs, 
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• the explanatory variable is age, and 
• the response variable is the maximum distance at 

which the driver can read a highway sign, or 
maximum reading distance. 

Both variables are quantitative. 

Here is what the raw data look like: 

In this data set, the individuals are the 30 drivers. For 
each driver, we have two values: age and maximum reading 
distance. 

To explore the relationship between age and distance, we 
create a graph called a scatterplot. To create a scatterplot, 
we use an ordered pair (x, y) to represent the data for each 
driver. The x-coordinate is the explanatory variable: 
driver’s age. The y-coordinate is the response variable: 
maximum reading distance. 

For this example, the ordered pair (18, 510) represents an 
18-year-old driver who can read a highway sign at a 
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maximum distance of 510 feet. We plot a point for each 
ordered pair. In the scatterplot, each driver appears as a 
single point. 

Generally, each point in a scatterplot represents one 
individual. The x-coordinate is the value of the explanatory 
variable for that individual. The y-coordinate is the value of 
the response variable for that individual. 

Here is the completed scatterplot: 

224  |  Scatterplots (1 of 5)



Learn By Doing 

Recall this dataset from a medical study. In this study 
researchers collected data on new mothers to identify 
variables connected to low birth weights. This scatterplot 
investigates the relationship between two quantitative 
variables in the study: mother’s weight prior to pregnancy 
and baby’s birth weight. 
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3856 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=63 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=63 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=63 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=63 

Comment 

Remember: The explanatory variable is on the horizontal x-axis. The 
response variable is on the vertical y-axis. Sometimes the variables 
do not have a clear explanatory–response relationship. In this case, 
there is no rule to follow. Plot the variables on either axis. 
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46. Scatterplots (2 of 5) 

 

Learning Objectives 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

Interpreting the Scatterplot 

How do we describe the relationship between two quantitative 
variables using a scatterplot? We describe the overall pattern and 
deviations from that pattern. 

This is the same way we described the distribution of one 
quantitative variable using a dotplot or a histogram in Summarizing 
Data Graphically and Numerically. To describe the overall pattern of 
the distribution of one quantitative variable, we describe the shape, 
center, and spread. We also describe deviations from the pattern 
(outliers). 
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Similarly, in a scatterplot, we describe the overall pattern with 

descriptions of direction, form, and strength. Deviations from the 
pattern are still called outliers. 

• The direction of the relationship can be positive, negative, or 

neither:  
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A positive (or increasing) relationship means that an increase 

in one of the variables is associated with an increase in the 
other. 

A negative (or decreasing) relationship means that an increase 
in one of the variables is associated with a decrease in the other. 

Not all relationships can be classified as either positive or 
negative. 

• The form of the relationship is its general shape. To identify 
the form, describe the shape of the data in the scatterplot. In 
practice, forms that we commonly use have mathematical 
equations. We look at a few of these equations in this course. 

230  |  Scatterplots (2 of 5)



For now, we simply describe the shape of the pattern in the 
scatterplot. Here are a couple of forms that are quite 
common:Linear form: The data points appear scattered about 
a line. We use a line to summarize the pattern in the data. We 
study the equation for a line in this module. 

 
Curvilinear form: The data points appear scattered about a 

smooth curve. We use a curve to summarize the pattern in the 
data. We study some specific types of curvilinear forms with 
their equations in Modules 4 and 12. 
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• The strength of the relationship is a description of how closely 
the data follow the form of the relationship. Let’s look, for 
example, at the following two scatterplots displaying positive, 
linear relationships:

 

 
In the top scatterplot, the data points closely follow the linear 

pattern. This is an example of a strong linear relationship. In the 
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bottom scatterplot, the data points also follow a linear pattern, 
but the points are not as close to the line. The data is more 
scattered about the line. This is an example of a weaker linear 
relationship. 

Labeling a relationship as strong or weak is not very precise. 
We develop a more precise way to measure the strength of a 
relationship shortly. 

Outliers are points that deviate from the pattern of the relationship. 
In the scatterplot below, there is one outlier. 
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Learn By Doing 

Fill in the letter of the description that matches each 
scatterplot. 

Descriptions: 

A: X = month (January = 1), Y = rainfall (inches) in Napa, CA 
in 2010 (Note: Napa has rain in the winter months and 
months with little to no rainfall in summer.) 

B: X = month (January = 1), Y = average temperature in 
Boston MA in 2010 (Note: Boston has cold winters and hot 
summers.) 

C: X = year (in five-year increments from 1970), Y = 
Medicare costs (in $) (Note: the yearly increase in Medicare 
costs has gotten bigger and bigger over time.) 

D: X = average temperature in Boston MA (°F), Y = average 
temperature in Boston MA (°C) each month in 2010 

E: X = chest girth (cm), Y = shoulder girth (cm) for a 
sample of men 

F: X = engine displacement (liters), Y = city miles per 
gallon for a sample of cars (Note: engine displacement is 
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roughly a measure of engine size. Large engines use more 
gas.) 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=64 

 

Scatterplots (2 of 5)  |  235

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=64#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=64#pb-interactive-content


47. Scatterplots (3 of 5) 

 

Learning Objectives 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

Now we return to our previous example. We apply the ideas of 
direction, form, and strength to describe the relationship between 
the age of the driver and the maximum distance to read a highway 
sign. Here is the scatterplot: 

Direction: The direction of the relationship is negative. An 
increase in age is associated with a decrease in reading distance, 
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which makes sense because older drivers tend to have diminished 
eyesight. So most older drivers can read the sign only when they are 
close to it. In other words, they have a shorter maximum reading 
distance. 

 
Form: The form of the relationship is linear. 
Strength: The data points are fairly close to the line, so the 

relationship is moderately strong. Do not worry if you feel uncertain 
about describing the strength of a relationship. We mentioned 
earlier that descriptions of strength are not very precise. We 
develop a more precise measure of the strength shortly. 

Outliers: There are no outliers. All the data points tend to follow 
the linear pattern. 
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48. Scatterplots (4 of 5) 

 

Learning Objectives 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

We now look at two more examples: 

Example 

Average Length of Pregnancy 

What is the relationship between an animal’s lifespan and 
the length of its pregnancy? To investigate this question, 
we have data from 40 different species of animals living in 
captivity. We use average lifespan as the explanatory 
variable, x. The average length of pregnancy is the response 
variable, y. (Source: Allen J. Rossman and Beth L. Chance, 
Workshop Statistics: Discovery with Data and Minitab [Key 
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College Publishing, 2001]. Original source: World Almanac 
and Book of Facts, 1993 [World Almanac, 1993].) 

 

What can we learn about the relationship from the 
scatterplot? 

The direction of the relationship is positive. An increase 
in lifespan is associated with an increase in pregnancy 
length. In other words, animals that live longer tend to have 
longer pregnancies. The form of the relationship is linear. 
The relationship is moderately strong. 
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Is there an outlier? There is a data point that deviates 
from the rest of the data because it has large x– and 
y-values. This is the elephant. Elephants live a long time 
(large x-value) and have a long pregnancy (large y-value). So 
the elephant is an outlier in the distribution of both the 
lifespan and the pregnancy variables. But this data point 
follows the positive direction of the data and fits the linear 
pattern. With respect to the form and direction of the 
relationship between the variables, this point is not an 
outlier. 

Notice that the variation in pregnancy length is larger for 
animals that live longer. For example, animals that live 5 
years have pregnancies that range from about 30 days to 
120 days. The short, red vertical line on the left illustrates 
this range. Animals that live 12 years have pregnancies that 
vary more, ranging from about 60 days to over 400 days. 
The longer red vertical line on the right illustrates this 
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range. So the relationship is stronger for animals with 
shorter lifespans. 

Example 

Fuel Usage 

When you drive a car, what is the relationship between 
the speed you drive and the amount of gas the car uses? In 
this study, engineers measured the amount of fuel (in liters) 
used to drive 100 kilometers. They made these fuel 
measurements for a car driving at a fixed speed (in 
kilometers per hour). They then made fuel measurements 
for different fixed speeds. 
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What can we learn about the relationship from the 
scatterplot? 

The data describe a relationship that decreases, then 
increases, so the direction of the relationship is negative 
and then becomes positive. In other words, at slow speeds, 
the car uses a lot of fuel. The amount of fuel decreases 
rapidly to a low point when the speed is 60 kilometers per 
hour, so the car uses the least amount of fuel at a speed of 
60 km/h. The amount of fuel increases gradually for speeds 
above 60 km/h. This forms a curvilinear relationship that is 
very strong. All of the data fit a smooth curve. 

Is there an outlier? The point (10, 21) lies above the rest of 
the data. With respect to speed (x), this point is not an 
outlier. The x-value does not deviate from the pattern for 
the other x-values in the data. In this study, it appears that 
the engineers varied the speeds by increments of 10 km/h. 
However, the y-value is much higher than the other 
y-values. With respect to fuel usage, this point is an outlier. 
But the point fits the overall curvilinear pattern in the data, 
so with respect to direction and form, this point is not an 
outlier. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=66 

Comment 

In Summarizing Data Graphically and Numerically, we developed a 
method for identifying outliers in a distribution of one quantitative 
variable. The method was the 1.5 * IQR rule. In a scatterplot, you 
can use this rule to determine if the x-value of a point is an outlier 
with respect to the x-values in data. Similarly, you can use this rule 
to determine if a y-value of a point is an outlier with respect to the 
y-values in the data. However, this rule does not help us identify a 
point that deviates from the overall pattern in the data. 

Is there a method to identify outliers that deviate from the overall 
pattern in a scatterplot? The answer is yes, but we do not discuss 
these techniques in this course. For now, just look at the scatterplot 
and see if a point deviates from the overall pattern. In other words, 
see if the point deviates from the direction and form of the data. 
We will see later that this type of outlier can influence measures of 
center and spread for two quantitative variables. 
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49. Scatterplots (5 of 5) 

 

Learning Objectives 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

Labeling Groups in a Scatterplot 

If we graph data from two or more groups in a scatterplot, the 
relationship between the two quantitative variables can be hidden 
or unclear. We can use a categorical variable to label groups within 
the scatterplot, then look for patterns within each group. The 
relationship may be clearer within each group. 
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Example 

Hot Dogs 

A study was conducted by a concerned health group in 
which 54 major hot dog brands were examined. Using this 
data, we explore the relationship between sodium content 
and calories. We begin by making a scatterplot with data 
from the three types of hot dogs: beef, poultry, and meat 
(meat is a combination of pork, beef, and poultry). 

A YouTube element has been excluded from this version 

of the text. You can view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=67 

 

Let’s Summarize 

• The relationship between two quantitative variables is visually 
displayed using the scatterplot, where each point represents 
an individual. We always plot the explanatory variable on the 
horizontal x-axis and the response variable on the vertical y-
axis. 

• When we explore a relationship using the scatterplot, we 
should describe the overall pattern of the relationship and any 
deviations from that pattern. To describe the overall pattern, 
consider the direction, form, and strength of the relationship. 
Assessing the strength just by looking at the scatterplot can be 
problematic; using a numerical measure to determine strength 
is discussed later in this course. 

• Adding labels to the scatterplot that indicate different groups 
or categories within the data might help us gain more insight 
about the relationship we are exploring. 

 

Scatterplots (5 of 5)  |  247

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=67#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=67#pb-interactive-content


50. Introduction: Linear 
Relationships 

What you’ll learn to do: Use a correlation 
coefficient to describe the direction and strength 
of a linear relationship. Recognize its limitations 
as a measure of the relationship between two 
quantitative variables. 

LEARNING OBJECTIVES 

• Use a correlation coefficient to describe the 
direction and strength of a linear relationship. 
Recognize its limitations as a measure of the 
relationship between two quantitative variables. 
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51. Linear Relationships (1 of 
4) 

 

Learning Objectives 

• Use a scatterplot to display the relationship 
between two quantitative variables. Describe the 
overall pattern (form, direction, and strength) and 
striking deviations from the pattern. 

Introduction 

So far, we have visualized relationships between two quantitative 
variables using scatterplots. We have also described the overall 
pattern of a relationship by considering its direction, form, and 
strength. We noted that it is difficult to assess the strength of a 
relationship just by looking at the scatterplot. In this section, we 
develop a numerical measure to assess the strength. 

We focus only on relationships that have a linear form. Linear 
forms are quite common and relatively simple to detect. More 
important, we have a numerical measure that can assess the 
strength of the linear relationship. We use this measure along with 
the scatterplot to describe the linear relationship between two 
quantitative variables. 

Even though we now focus only on linear relationships, remember 
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that not every relationship between two quantitative variables has a 
linear form. We have already seen several examples of relationships 
that are not linear. However, the measure of strength that we are 
about to study can be used only with linear relationships. If we use 
this measure with nonlinear relationships, we will draw incorrect 
conclusions about the relationship between the variables. 

Let’s start with an example. Consider the following two 
scatterplots. 
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We can see that in both cases, the direction of the relationship is 
positive and the form of the relationship is linear. What about the 
strength? Recall that the strength of a relationship is a description 
of how closely the data follow its form. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=69 

The scale used in a scatterplot can sometimes affect our assessment 
of strength, so we need to develop a measure for the strength of a 
linear relationship between two quantitative variables. 
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52. Linear Relationships (2 of 
4) 

 

Learning Objectives 

• Use a correlation coefficient to describe the 
direction and strength of a linear relationship. 
Recognize its limitations as a measure of the 
relationship between two quantitative variables. 

The Correlation Coefficient (r) 

The numerical measure that assesses the strength of a linear 
relationship is called the correlation coefficient and is denoted by 
r. In this section, we 

• define r. 
• discuss the calculation of r. 
• explain how to interpret the value of r. 
• talk about some of the properties of r. 

Correlation coefficient (r) 
(Definition) 

The correlation coefficient (r) is a numeric measure that 
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measures the strength and direction of a linear relationship 
between two quantitative variables. 

Calculation: r is calculated using the following formula: 

where n is the sample size; x is a data value for the explanatory 
variable;  is the mean of the x-values;  is the standard deviation 
of the x-values; similarly, for the terms involving y. To calculate r, the 

term  is calculated for each individual. 

These terms are added together, then the sum is divided by (n–1). 
However, the calculation of r is not the focus of this course. We 

use a statistics package to calculate the correlation coefficient for 
us, and the emphasis of this course is on the interpretation of r’s 
value. 

Interpretation 

Once we obtain the value of r, its interpretation with respect to the 
strength of linear relationships is quite simple, as this walkthrough 
illustrates: 
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A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=70 

Use the simulation below to investigate how the value of  relates 
to the direction and strength of the relationship between the two 
variables in the scatterplot. 

In the simulation, use the slider bar at the top of the simulation 
to change the value of the correlation coefficient (r) between −1 and 
1. Observe the effect on the scatterplot. Click on the “Switch Sign” 
button to jump between positive and negative relationships of the 
same strength. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=70 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=70 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=70 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=70 

An interactive or media element has been 

excluded from this version of the text. You can 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=70 
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53. Linear Relationships (3 of 
4) 

 

Learning Objectives 

• Use a correlation coefficient to describe the 
direction and strength of a linear relationship. 
Recognize its limitations as a measure of the 
relationship between two quantitative variables. 

Now we interpret the value of r in the context of some familiar 
examples. 

Example 

Highway Sign 

In a previous example, we looked at this scatterplot to 
investigate the relationship between the age of a driver and 
the maximum distance at which the driver can read a 
highway sign. Because the form of the relationship is linear, 
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we can use the correlation coefficient as a measure of 
direction and strength of the linear relationship. 

 

The r-value is −0.793. The r-value is negative (r < 0), 
which means that the linear relationship has a negative 
direction. We can see this in the scatterplot. Because r is 
somewhat close to −1, the relationship is moderately strong. 

In the context of the data, the negative correlation 
confirms that the maximum reading distance decreases 
with age. Because r indicates a moderately strong linear 
relationship, we expect that drivers of similar age will have 
some (but not a lot) of variability in their maximum reading 
distance. 
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Example 

Biology Courses 

A biology department is interested in tracking the 
progress of its students from entry until graduation. As part 
of the study, the department tabulates the performance of 
10 students in an introductory course and later in an 
upper-level course required for graduation. What is the 
relationship between the students’ course grades in the two 
courses? Here are two scatterplots of the same data. 

 

Both scatterplots show a relationship that is positive in 
direction and linear in form. The strength appears different 
in the two scatterplots because of the difference in scales. 
This illustrates why we support our visual assessment of 
strength with a measurement of strength. We can use the 
correlation coefficient as a measure of the strength of the 
linear relationship. The correlation coefficient is r = 0.91, 
which is close to 1. The correlation coefficient confirms 
that the linear relationship is very strong. 
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Comment 

Note that in both examples, we supplemented the scatterplot with 
the correlation (r). Now that we have the correlation, why do we 
still need to look at a scatterplot when examining the relationship 
between two quantitative variables? 

The correlation coefficient can be interpreted only as the measure 
of the strength of a linear relationship, so we need the scatterplot 
to verify that the relationship indeed looks linear. This point and its 
importance will be clearer after we examine a few properties of r. 
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54. Linear Relationships (4 of 
4) 

 

Learning Objectives 

• Use a correlation coefficient to describe the 
direction and strength of a linear relationship. 
Recognize its limitations as a measure of the 
relationship between two quantitative variables. 

Properties of r 

We now discuss and illustrate several important properties of the 
correlation coefficient as a numeric measure of the strength of a 
linear relationship. 

1. The correlation does not change when the units of 
measurement of either one of the variables change. In other words, 
if we change the units of measurement of the explanatory variable 
and/or the response variable, it has no effect on the correlation (r). 

To illustrate, compare the two versions of the scatterplot of the 
relationship between the age of a driver and the maximum distance 
for reading a highway sign. 
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The top scatterplot displays the original data where the maximum 
distances are measured in feet. The bottom scatterplot displays 
the same relationship, but with maximum distances changed to 
meters. Notice that the y-values have changed, but the correlations 
are the same. This example illustrates that a change in units does 
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not change r. This is true even if we change the units on both 
variables. It makes sense because a change in units does not change 
the pattern in the data. The direction, form, and strength of the 
relationship remain the same. Since r measures direction and 
strength of a linear relationship, the value of r remains the same. 

2. The correlation measures only the strength of a linear 
relationship between two variables. It ignores any other type of 
relationship, no matter how strong it is. For example, consider the 
relationship between the average fuel usage of driving a fixed 
distance in a car and the speed at which the car drives: 

 

The data have a smooth curvilinear form. The relationship is very 
strong because the data follow the curve perfectly. 

Notice that the correlation r = −0.172 indicates a weak linear 
relationship. This makes sense because the data does not closely 
follow a linear form. So the correlation coefficient only gives 
information about the strength of a linear relationship. It does not 
give reliable information about the strength of a curvilinear 
relationship. 
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This example illustrates that the correlation coefficient is useless 
as a measure of strength if the relationship is not linear. It also 
illustrates an important rule: Always make a scatterplot of the data 
before calculating and interpreting the meaning of r. 

Why should we make a scatterplot first? If we did not look at 
the scatterplot, but looked only at r, what mistake might we make? 
We might conclude that the relationship between the variables is 
weak (or that there is no relationship) because r is close to zero. But 
this conclusion is wrong. We have misinterpreted “r close to 0” as 
an indicator of a weak relationship or no relationship rather than 
a weak linear relationship or no linear relationship. We can easily 
avoid this misinterpretation of r by looking at the scatterplot. 

Let’s summarize. If r is close to zero, it means that the data has 
a very weak linear relationship or no linear relationship. When r is 
close to zero, it is possible that the data has a strong curvilinear 
relationship (as we saw in this example). To avoid errors, we must 
look at the form of the data in the scatterplot before we calculate 
and interpret r. If the form is not linear, do not use r. 

3. The correlation by itself is not enough to determine whether 
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a relationship is linear. To see this, let’s look at a situation with an 
r-value that is close to 1 but a relationship that is not linear. Recall 
the study in which participants were paid to complete a survey. 
The study examined the relationship between the amount of the 
monetary incentive and the percentage of the sample who returned 
the survey. 

 

The variables have a strong curvilinear relationship, yet the 
correlation is r = 0.876, quite close to 1. 

Reviewing the last two examples, we see that strong curvilinear 
relationships can have a correlation close to 0 or close to 1. So the 
correlation alone does not tell us whether a relationship is linear. 
We must look at a scatterplot of the data. 

Always look at the data! 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=72 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=72 

4. The correlation is heavily influenced by outliers. As you will learn 
in the next two activities, the way the outlier influences the 
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correlation depends on whether or not the outlier is consistent with 
the pattern of the linear relationship. 

Using the simulation below, let’s explore how an outlier affects the 
correlation. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=72 

 

To see how an outlier affects the correlation, do the following: 

1. Fill the scatterplot with a hypothetical positive linear 
relationship between X and Y (by clicking on the graph about a 
dozen times starting at the lower left and going up diagonally 
to the top right). Pay attention to the correlation coefficient 
calculated at the top left of the simulation. (Clicking on the 
garbage can lets you start over.) 

2. Once you are satisfied with your hypothetical data, create an 
outlier by clicking on one of the data points in the upper right 
of the graph and dragging it down along the right side of the 
graph. Again, pay attention to what happens to the value of the 
correlation. 

What did this activity illustrate? This activity illustrates that the 
correlation decreases when the outlier deviates from the pattern of 
the relationship. By dragging a data point from the upper right to 
the lower right, you created an outlier that does not fit the positive 
association in the rest of the data. This decreases the strength of the 
linear relationship and causes a decrease in  . 
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In the next activity, you will see how the correlation increases 
when the outlier is consistent with the direction of the linear 
relationship. 

 

Let’s Summarize 

• A special case of the relationship between two quantitative 
variables is the linear relationship in which a straight line 
simply and adequately summarizes the relationship. 

• When the scatterplot displays a linear relationship, we 
supplement it with the correlation coefficient (r), which 
measures the strength and direction of a linear relationship 
between two quantitative variables. The correlation ranges 
between −1 and 1. Values near −1 indicate a strong negative 
linear relationship, values near 0 indicate a weak linear 
relationship, and values near 1 indicate a strong positive linear 
relationship. 

• The correlation is an appropriate numerical measure only for 
linear relationships and is sensitive to outliers. Therefore, the 
correlation should be used only as a supplement to a 
scatterplot (after we look at the data). 
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55. Introduction: Association 
vs Causation 

What you’ll learn to do: Distinguish between 
association and causation. Identify lurking 
variables that may explain an observed 
relationship. 

LEARNING OBJECTIVES 

• Distinguish between association and causation. 
Identify lurking variables that may explain an 
observed relationship. 
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56. Causation and Lurking 
Variables (1 of 2) 

 

Learning Objectives 

• Distinguish between association and causation. 
Identify lurking variables that may explain an 
observed relationship. 

Introduction 

A common mistake people make when describing the relationship 
between two quantitative variables is that they confuse association 
and causation. This mistake is so common that we devote this entire 
section to clarifying the difference. 

This confusion often occurs when there is a strong relationship 
between the two quantitative variables. In the case of a linear 
relationship, people mistakenly interpret an r-value that is close to 
1 or -1 as evidence that the explanatory variable causes changes in 
the response variable. In this case, the correct interpretation is that 
there is a statistical relationship between the variables, not a causal 
link. In other words, the explanatory variable and the response 
variable vary together in a predictable way. There is an association 
between the variables. But this should not be interpreted as a cause-
and-effect relationship. 
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Let’s look at an example. 

Example 

Fire Damage 

The scatterplot below shows the relationship between 
the number of firefighters sent to fires (x) and the amount 
of damage caused by fires (y) in a certain city. 

 

The scatterplot shows a positive association with a 
somewhat strong curvilinear form. An increase in the 
number of firefighters is associated with an increase in the 
damage done by the fire. 

Can we conclude that the increase in firefighters causes 
the increase in damage? Of course not. 
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A third variable is at play in the background – the 
seriousness of the fire – and is responsible for the observed 
relationship. More serious fires require more firefighters 
and also result in more damage. 

The following figure will help you visualize this situation: 

 

The seriousness of the fire is a lurking variable. A lurking 
variable is a variable that is not measured in the study. It is 
a third variable that is neither the explanatory nor the 
response variable, but it affects your interpretation of the 
relationship between the explanatory and response 
variables. 

In our example, the lurking variable has an effect on both the 
explanatory and the response variables. This common effect creates 
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the observed association between the explanatory and response 
variables even though there is no cause-and-effect link between 
them. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=74 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=74 
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57. Causation and Lurking 
Variables (2 of 2) 

 

Learning Objectives 

• Distinguish between association and causation. 
Identify lurking variables that may explain an 
observed relationship. 

In the next example, we investigate a subtle point about the 
confusion between association and causation. In this example, a 
cause-and-effect connection is logical but not justified by an 
observed association in a single study. 

Example 

Smoking and Lung Cancer 

In this data, x = cigarette consumption per capita in the 
United States, and y = lung cancers per 100,000. To 
investigate the connection between cigarette consumption 
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and lung cancers, the data is offset by 30 years because 
cancer takes time to develop. For example, cigarette 
consumption in 1945 is paired with cancer rates for 1975. 

 

In the scatterplot, we see a fairly strong positive 
correlation. 

Can we conclude from this data that cigarette smoking 
causes lung cancer? The answer is no. 

The data comes from an observational study. Recall from 
our previous discussions in Module 1 that we can draw 
cause-and-effect conclusions only from randomized 
comparative experiments. From this study, we can say that 
cigarette smoking is associated with lung cancer. We can 
also say that cigarette smoking correlates with lung cancer. 
We cannot say that cigarette smoking causes lung cancer. 

Yet the National Cancer Institute’s website states that 
“cigarette smoking causes many types of cancer, including 
cancers of the lung” (National Cancer Institute). 

How can this be? Did the National Cancer Institute 
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conduct a randomized comparative experiment to establish 
this cause-and-effect relationship? Of course not. We 
cannot randomly assign people to smoke or not smoke. All 
of the studies linking smoking with cancer are 
observational studies. Alone, each study can show only an 
association. 

So is it possible to draw a causal link between cigarette 
consumption and cancer rates? The answer is yes, well sort 
of. In practice, researchers use criteria such as the 
following to provide evidence of a causal connection from 
observational studies: 

• There is a reasonable explanation for how one 
variable might cause the other. 

• The association is seen in repeated studies under 
varying conditions. 

• The effects of potential lurking variables are ruled 
out when we look across studies. 

The point of the previous example is again that association does not 
imply causation. But researchers can use an observed association as 
the first step in building a case for causation. 

This point is subtle but important. When experiments cannot 
be conducted, it can be difficult and controversial to explain an 
observed association between two variables. Many of the current 
disputes involving data and statistics involve questions of causation 
that we cannot investigate through an experiment. Does the death 
penalty reduce violent crime? Does cell phone use cause brain 
tumors? Does pollution cause global warming? All of these 
questions imply a cause-and-effect relationship in situations that 
are complex and involve many interacting variables. In these 
situations, a single observational study cannot establish a causal 
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link between two variables. But researchers can use the observed 
association as a first step in building a case for causation. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=75 

 
 

Let’s Summarize 

• The relationship between two quantitative variables is visually 
displayed using the scatterplot, where each point represents an 
individual. We always plot the explanatory variable on the 
horizontal axis and the response variable on the vertical axis. 

• When we explore a relationship using the scatterplot, we 
should describe the overall pattern of the relationship and any 
deviations from that pattern. To describe the overall pattern, 
consider the direction, form, and strength of the relationship. 

• Adding labels to the scatterplot that indicate different groups 
or categories within the data might help us gain more insight 
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about the relationship we are exploring. 
• A special case of the relationship between two quantitative 

variables is the linear relationship. In this case, a straight line 
simply and adequately summarizes the relationship. 

• When the scatterplot displays a linear relationship, we 
supplement it with the correlation coefficient (r), which 
measures the strength and the direction of a linear relationship 
between two quantitative variables. The correlation ranges 
between -1 and 1. Values near -1 indicate a strong negative 
linear relationship. Values near 0 can indicate a weak or no 
linear relationship. Values near 1 indicate a strong positive 
linear relationship. Remember, we use the correlation 
coefficient only after we have looked at the data and observed 
that there is a linear relationship. If you have no information 
about what the data actually looks like, then you should not 
use the correlation coefficient in your analysis. 

• The correlation is an appropriate numerical measure only for 
linear relationships, and it is sensitive to outliers. Therefore, 
the correlation should be used only as a supplement to a 
scatterplot (after we look at the data). 

• A lurking variable is a variable that is not measured in the 
study. It is a third variable that is neither the explanatory nor 
the response variable, but it affects your interpretation of the 
relationship between the explanatory and response variable. 

• Association does not imply causation. Do not interpret a high 
correlation between explanatory and response variables as a 
cause-and-effect relationship. 

• An observational study alone cannot establish a causal 
connection between explanatory and response variables. To 
establish a cause-and-effect relationship, researchers must 
conduct a comparative randomized experiment. In reality, it is 
often impossible to conduct an experiment. So observational 
studies that show an association between two variables can be 
used as a first step in building a case for causation. 
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58. Introduction: Linear 
Regression 

What you’ll learn to do: For a linear relationship, 
use the least squares regression line to model the 
pattern in the data and to make predictions. 

LEARNING OBJECTIVES 

• For a linear relationship, use the least squares 
regression line to model the pattern in the data and 
to make predictions. 
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59. Linear Regression (1 of 4) 

 

Learning Objectives 

• For a linear relationship, use the least squares 
regression line to model the pattern in the data and 
to make predictions. 

So far we have used a scatterplot to describe the relationship 
between two quantitative variables. We described the pattern in 
the data by describing the direction, form, and strength of the 
relationship. We then focused on linear relationships. When the 
relationship is linear, we used correlation (r) as a measure of the 
direction and strength of the linear relationship. 

Our focus on linear relationships continues here. We will 

• use lines to make predictions. 
• identify situations in which predictions can be misleading. 
• develop a measurement for identifying the best line to 

summarize the data. 
• use technology to find the best line. 
• interpret the parts of the equation of a line to make our 

summary of the data more precise. 
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Making Predictions 

Earlier, we examined the linear relationship between the age of a 
driver and the maximum distance at which the driver can read a 
highway sign. Suppose we want to predict the maximum distance 
that a 60-year-old driver can read a highway sign. In the original 
data set, we do not have a 60-year-old driver. 

How could we make a prediction using the linear pattern in the 
data? 

Here again is the scatterplot of driver ages and maximum reading 
distances . (Note: Sign Legibility Distance = Max distance to read 
sign.) We marked 60 on the x-axis. 

 
Of course, different 60-year-olds will have different maximum 

reading distances . We expect variability among individuals. But 
here our goal is to make a single prediction that follows the general 
pattern in the data. Our first step is to model the pattern in the data 
with a line. In the scatterplot, you see a red line that follows the 
pattern in the data. 
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To use this line to make a prediction, we find the point on the line 

with an x-value of 60. Simply trace from 60 directly up to the line. 
We use the y-value of this point as the predicted maximum reading 
distance for a 60-year-old. Trace from this point across to the y-
axis. 

284  |  Linear Regression (1 of 4)



 
We predict that 60-year-old drivers can see the sign from a 

maximum distance of just under 400 feet. 
We can also use the equation for the line to make a prediction. 

The equation for the red line is 
Predicted distance = 576 − 3 * Age 
To predict the maximum distance for a 60-year-old, substitute 

Age = 60 into the equation. 
Predicted distance = 576 − 3 * (60) = 396 feet 
Shortly, we develop a measurement for identifying the best line to 

summarize the data. We then use technology to find the equation of 
this line. Later, in “Assessing the Fit of a Line,” we develop a method 
to measure the accuracy of the predictions from this “best” line. For 
now, just focus on how to use the line to make predictions. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=77 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=77 

Before we leave the idea of prediction, we end with the following 
cautionary note: 

Avoid making predictions outside the range of the data. 
Prediction for values of the explanatory variable that fall outside 

the range of the data is called extrapolation. These predictions are 
unreliable because we do not know if the pattern observed in the 
data continues outside the range of the data. Here is an example. 
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Example 

Cricket Thermometers 

Crickets chirp at a faster rate when the weather is warm. 
The scatterplot shows data presented in a 1995 issue of 
Outside magazine. Chirp rate is the number of chirps in 13 
seconds. The temperature is in degrees Fahrenheit. 

 

There is a strong relationship between chirp rate and 
temperature when the chirp rate is between about 18 and 
45. What form does the data have? This is harder to 
determine. A line appears to summarize the data well, but 
we also see a curvilinear form, particularly when we pay 
attention to the first and last data points. 
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Both the curve and line are good summaries of the data. 
Both give similar predictions for temperature when the 
chirp rate is within the range of the data (between 18 and 
45). But outside this range, the curve and the line give very 
different predictions. For example, if the crickets are 
chirping at a rate of 60, the line predicts a temperature just 
above 95°F. The curve predicts a much lower temperature 
of about 85°F. 

Which is a better prediction? We do not know which is 
better because we do not know if the form is linear or 
curvilinear outside the range of the data. 

If we use our model (the line or the curve) to make 
predictions outside the range of the data, this is an example 
of extrapolation. We see in this example that extrapolation 
can give unreliable predictions. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=77 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=77 
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60. Linear Regression (2 of 4) 

 

Learning Objectives 

• For a linear relationship, use the least squares 
regression line to model the pattern in the data and 
to make predictions. 

We continue our discussion of linear relationships with a focus on 
how to find the best line to summarize a linear pattern in data. 
Specifically, we do the following: 

• Develop a measurement for identifying the best line to 
summarize the data. 

• Use technology to find the best line. 

Let’s begin with a simple data set with only five data points. 
Which line appears to be a better summary of the linear pattern 

in the data? 
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Let’s make some observations about how these lines relate to the 

data points. 
The line on the left passes through two of the five points. The 

point (12, 7) is very close to the line. The points (8, 13) and (17, 14) are 
relatively far from the line. 

The line on the right does not pass through any of the points. It 
appears to pass through the middle of the distribution of the data. 
The points (8, 13) and (17, 14) are closer to this line than to the line on 
the left. But the other data points are farther from this line. 

Which line is the best summary of the positive linear association 
we see in the data? Well, we may not agree on this, so we need a 
measurement of “best fit.” 

Here’s the basic idea: The closer the line is to all of the data points, 
the better the line summarizes the pattern in the data. Notice when 
the line is close to the data points, it gives better predictions. A good 
prediction means the predicted y-value from the line is close to the 
actual y-value for the data point. 

Here are the scatterplots again. For each data point, we drew 
a vertical line segment from the point to the summary line. The 
length of each vertical line segment is the amount that the predicted 
y-value deviates from the actual y-value for that data point. We 
think of this as the error in the prediction. We want to adjust the line 
until the overall error for all points together is as small as possible. 
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The most common measurement of overall error is the sum of the 

squares of the errors, or SSE (sum of squared errors). The line with 
the smallest SSE is called the least-squares regression line. We call 
this line the “line of best fit.” 

Here are the scatterplots again. As before, each vertical line 
represents the error in a prediction. For each data point, the 
squared error is equal to the area of a yellow square. The least-
squares regression line is the line with the smallest SSE, which 
means it has the smallest total yellow area. 

 
Using the least-squares measurement, the line on the right is the 

better fit. It has a smaller sum of squared errors. When we compare 
the sum of the areas of the yellow squares, the line on the left has 
an SSE of 57.8. The line on the right has a smaller SSE of 43.9. 

But is the line on the right the best fit? The answer is no. The line 
of best fit is the line that has the smallest sum of squared errors 
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(SSE). For this data set, the line with the smallest SSE is y = 6.72 
+0.26x. The SSE is 41.79. 

Now you try it with a new data set. Use the following simulation 
to adjust the line. See if you can find the least-squares regression 
line. (Try to find the line that makes the SSE as small as possible.) 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=78 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=78 
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61. Linear Regression (3 of 4) 

 

Learning Objectives 

• For a linear relationship, use the least squares 
regression line to model the pattern in the data and 
to make predictions. 

Let’s quickly revisit the list of our data analysis tools for working 
with linear relationships: 

• Use a scatterplot and r to describe direction and strength of 
the linear relationship. 

• Find the equation of the least-squares regression line to 
summarize the relationship. 

• Use the equation and the graph of the least-squares line to 
make predictions. 

• Avoid extrapolation when making predictions. 

Now we focus on the equation of a line in more detail. Our goal 
is to understand what the numbers in the equation tell us about 
the relationship between the explanatory variable and the response 
variable. 

Here are some of the equations of lines that we have used in our 
discussion of linear relationships: 

Predicted distance = 576 − 3 * Age 
Predicted height = 39 + 2.7 * forearm length 
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Predicted monthly car insurance premium = 97 − 1.45 * years of 
driving experience 

Notice that the form of the equations is the same. In general, each 
equation has the form 

Predicted y = a + b * x 
When we find the least-squares regression line, a and b are 

determined by the data. The values of a and b do not change, so we 
refer to them as constants. 

In the equation of the line, the constant a is the prediction when 
x = 0. It is called initial value. In a graph of the line, a is the 
y-intercept. 

In the equation of the line, the constant b is the rate of change, 
called the slope. In a graph of the least-squares line, b describes 
how the predictions change when x increases by one unit. More 
specifically, b describes the average change in the response variable 
when the explanatory variable increases by one unit. 

We can write the equation of the line to reflect the meaning of a 
and b: 

Predicted y = a + b * x 
Predicted y-value = (initial value) + (rate of change)*x 

Predicted y-value = (y-intercept) + (slope)*x 
The constants a and b are shown in the graph of the line below. 
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Algebra review 

The algebra of a line 

The general form for the equation of a line is Y = a + 
bX. The constants “a” and “b” can be either positive or 
negative. The constant “a” is the y-intercept where the 
line crosses the y-axis. The constant “b” is the slope. It 
describes the steepness of the line. In algebra we 
describe the slope as “rise over run”. The slope is the 
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amount that Y increases (or decreases) for each 1-unit 
increase in X. 

 

EXAMPLE 

1 

Consider the line . The 

intercept is 1. The slope is 1/3, and the graph of 
this line is, therefore: 
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EXAMPLE 

2 

Consider the line . The 

intercept is 1. The slope is -1/3, and the graph of 
this line is, therefore: 

298  |  Linear Regression (3 of 4)



 

The simulation below allows you to see how changing 
the values of the slope and y-intercept changes the line. 
The slider on the left controls the y-intercept, a. The 
slider on the right controls the slope, b. 

Use the simulation to draw the following lines: 

Y = 3 + 0.67X 
Y = 5 – X (which can also be written Y = 5 – 1.0X) 

Y = 2X (which can also be written Y = 0 + 2X) 
Y = 5 – 2X 

An interactive or media element has been 

excluded from this version of the text. You 
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can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=79 

 
Use the following graphs in the next activity to investigate the 

equation of lines. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=79 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=79 

Interpreting the Slope and Intercept 

The constants in the equation of a line give us important 
information about the relationship between the predictions and x. 
In the next examples, we focus on how to interpret the meaning of 
the constants in the context of data. 
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Example 

Highway Sign Visibility Data 

Recall that from a data set of 30 drivers, we see a strong 
negative linear relationship between the age of a driver (x) 
and the maximum distance (in feet) at which a driver can 
read a highway sign. The least-squares regression line is 

Predicted y-value = (starting value) + (rate of change)*x 

Predicted distance = 576 − 3 * Age 

Predicted distance = 576 + (−3 * Age) 

The value of b is −3. This means that a 1-year increase in 
age corresponds to a predicted 3-foot decrease in 
maximum distance at which a driver can read a sign. 
Another way to say this is that there is an average decrease 
of 3 feet in predicted sign visibility distance when we 
compare drivers of age x to drivers of age x + 1. 

The 576 is the predicted value when x = 0. Obviously, it 
does not make sense to predict a maximum sign visibility 
distance for a driver who is 0 years old. This is an example 
of extrapolating outside the range of the data. But the 
starting value is an important part of the least-squares 
equation for predicting distances based on age. 

The equation tells us that to predict the maximum 
visibility distance for a driver, start with a distance of 576 
feet and subtract 3 feet for every year of the driver’s age. 
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Example 

Body Measurements 

In the body measurement data collected from 21 female 
community college students, we found a strong positive 
correlation between forearm length and height. The least-
squares regression line is 

Predicted height = 39 + 2.7 * forearm length 

The value of b is 2.7. This means that a 1-inch increase in 
forearm length corresponds to a predicted 2.7-inch 
increase in height. Another way to say this is that there is 
an average increase of 2.7-inches in predicted height when 
we compare women with forearm length of x to women 
with forearm length of x + 1. 

The 39 is the predicted value when x = 0. Obviously, it 
does not make sense to predict the height of a woman with 
a 0-inch forearm length. This is another example of 
extrapolating outside the range of the data. But 39 inches is 
the starting value in the least-squares equation for 
predicting height based on forearm length. 

The equation tells us that to predict the height of a 
woman, start with 39 inches and add 2.7 inches for every 
inch of forearm length. 

In the graph below, we see the slope b represented by a 
triangle. An 8-inch increase in foreman length corresponds 
to a 21.6-inch increase in predicted height. b = 21.6 / 8 = 2.7. 
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An arrow points to the starting value a = 39. This is the 
point with x = 0. 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=79 
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62. Linear Regression (4 of 4) 

 

Learning Objectives 

• For a linear relationship, use the least squares 
regression line to model the pattern in the data and 
to make predictions. 

In the previous activity we used technology to find the least-
squares regression line from the data values. 

We can also find the equation for the least-squares regression line 
from summary statistics for x and y and the correlation. 

If we know the mean and standard deviation for x and y, along 
with the correlation (r), we can calculate the slope b and the starting 
value a with the following formulas: 

As before, the equation of the linear regression line is 
Predicted y = a + b * x 

Example: Highway Sign Visibility 

We will now find the equation of the least-squares 
regression line using the output from a statistics package. 
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• The slope of the line is 

• The intercept of the line is a = 423 – (-3 * 51) = 576 
and therefore the least-squares regression line for 
this example is Predicted distance = 576 + (-3 * Age), 
which can also be written as Predicted distance = 576 
– 3 * Age 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=80 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=80 

Now you know how to calculate the least-squares regression line 
from the correlation and the mean and standard deviation of x and 
y. But what do these formulas tell us about the least-squares line? 

We know that the intercept a is the predicted value when x = 0. 
The formula  tells us that the we can find the 

intercept using the point: ( ). 

This is interesting because it says that every least-squares 
regression line contains this point. In other words, the least-squares 
regression line goes through the mean of x and the mean of y. 
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We also know that the slope of the least-squares regression line is 
the average change in the predicted response when the explanatory 
variable increases by 1 unit. 

The slope formula 

tells us that the slope is related to the correlation in this way: 
when x increases an x standard deviation, the predicted y-value 
does not change by a y standard deviation. Instead, the predicted 
y-value changes by less than a y standard deviation. The change is a 
fraction of a y standard deviation, and that fraction is r. Another way 
to say this is that when x increases by a standard deviation in x, the 
average change in the predicted response is a fractional change of r 
standard deviations in y. 

It is not surprising that slope and correlation are connected. We 
already know that when a linear relationship is positive, the 
correlation and the slope are positive. Similarly, when a linear 
relationship is negative, the correlation and slope are both negative. 
But now we understand this connection more precisely. 

 
 

Let’s Summarize 

• The line that best summarizes a linear relationship is the least-
squares regression line. The least-squares line is the best fit 
for the data because it gives the best predictions with the least 
amount of overall error. The most common measurement of 
overall error is the sum of the squares of the errors (SSE). The 
least-squares line is the line with the smallest SSE. 

• We use the least-squares regression line to predict the value of 
the response variable from a value of the explanatory variable. 

• Prediction for values of the explanatory variable that fall 
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outside the range of the data is called extrapolation. These 
predictions are unreliable because we do not know if the 
pattern observed in the data continues outside the range of 
the data. Avoid making predictions outside the range of the 
data. 

• The slope of the least-squares regression line is the average 
change in the predicted values of the response variable when 
the explanatory variable increases by 1 unit. 

• We have two methods for finding the equation of the least-
squares regression line: 

Predicted y = a + b * x 
Method 1: We use technology to find the equation of the least-

squares regression line: 
Predicted y = a + b * x 

Method 2: We use summary statistics for x and y and the 
correlation. In this method we can calculate the slope b and the 
y-intercept a using the following: 
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63. Introduction: Assessing 
the Fit of a Line 

What you’ll learn to do: Use residuals, standard 
error, and r2 to assess the fit of a linear model. 

LEARNING OBJECTIVES 

• Use residuals, standard error, and r2 to assess the 
fit of a linear model. 
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64. Assessing the Fit of a Line 
(1 of 4) 

 

Learning Objectives 

• Use residuals, standard error, and r2 to assess the 
fit of a linear model. 

Introduction 

Let’s take a moment to summarize what we have done up to this 
point in Examining Relationships: Quantitative Data. Our goal from 
the beginning was to examine the relationship between two 
quantitative variables. We started by looking at scatterplots to see 
if we could see any pattern between the explanatory and response 
variables. We focused early in the course on identifying those cases 
that were linear in form. At the same time, we assessed how strong 
the linear relationship was on the basis of visual inspection. As is our 
usual strategy, we turned from graphs to numeric measures, and in 
particular, we developed the correlation coefficient, r, as a measure 
of the strength of the linear relationship we observed in the graph. 

Once we established that there was a linear relationship between 
explanatory and response variables, the next step was to find a line 
that fit the data: the best-fit line. Here we used the least-squares 
method to find the regression line. Finally, we used the equation of 
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the regression line to predict the value of the response variable for 
a given value of the explanatory variable. 

How Good Is the Best-Fit Line? 

Now that we have a mathematical model (the least-squares 
regression line) that we can use to make predictions, we want to 
know: How good are these predictions, and how can we measure the 
error in a prediction? 

Example 

Highway Sign Visibility 

Let’s begin our investigation by predicting the maximum 
distance that an 18-year-old driver can read a highway sign 
and then determining the error in our prediction. 

We use the regression line equation: 

Distance = 576 + (–3 * Age) 

To predict the distance for an 18-year-old driver, we plug 
Age = 18 into the equation. 

Predicted distance = 576 + (–3 * 18) = 522 

Our prediction is that 522 feet is the maximum distance 
at which an 18-year-old driver can read a highway sign. 
Now let’s compare our prediction to the actual data for the 
18-year-old driver: (18, 510). 

312  |  Assessing the Fit of a Line (1 of 4)



The error in our prediction is 510 – 522 = –12. 

This tells us that the actual distance for the 18-year-old 
driver is 12 feet closer than the prediction. In other words, 
our prediction is too large. It overestimates the actual 
distance by 12 feet. 

So in general, we have Observed data value – Predicted value = 
Error. 

If we use (x, y) to represent a typical data point and ŷ to represent 
the predicted value (obtained by using the regression equation), 
then we have 

ŷ

Learn By Doing 

Using this table showing “observed” and “predicted” 
distances for some drivers, find the following: 

https://assessments.lumenlearning.com/assessments/
3497 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

Now let’s look at the error from a different perspective. We can 
think of the error as a way to adjust the prediction to match the data 
value. 

From this point of view, we rewrite ŷ  as 

ŷ  . 

This last equation says that the observed value is the predicted 
value plus the error. In other words, we can think of the error as the 
amount that we have to add to the prediction to get the observed 
value. From this point of view, the error can be thought of as a 
correction term. If the error is positive, it means the prediction is 
too small (the prediction underestimates the actual y-value). If the 
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error is negative, it means the prediction is too large (the prediction 
overestimates the actual y-value). 

The prediction error is also called a residual. So another way to 
express the previous equation is 

ŷ
In our next example, we look at prediction error from this point of 

view. 

Example 

Biology Courses 

A biology department tracks the progress of students in 
its program. Grades in the introductory biology course 
have a strong linear relationship with grades in the upper-
level biology courses (r = 0.91). 

The least-squares regression equation is 

Upper course grade = −8.9 + (1.05 * Intro course grade) 

Let’s look at the predicted upper course grade for a 
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student who makes a 75% in the introductory biology 
course. 

Upper course grade = −8.9 + (1.05 * 75) = 69.85 ≈ 70 

The regression line predicts that this student will make a 
70% in the upper-level biology course. 

The actual grade in the upper-level course for this 
student is 63%. The prediction is too high: it overestimates 
the data. To match the data value, we would need to 
subtract 7 from the prediction, so the error is −7. 

In the scatterplot, notice that the regression line lies 
above the point (75, 63). Visually, we can see that the 
prediction is too high. This reinforces our previous 
observation that the prediction overestimates the data 
value. We would have to adjust the prediction downward to 
match the data value. Viewing the error as a correction 
term, we see the correction has to be negative. 

Notice that when a point is close to the regression line, 
the prediction is close to the actual upper course grade, so 
the error is small. Another way to say this is that points 
close to the regression line have a small residual. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=82 
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65. Assessing the Fit of a Line 
(2 of 4) 

 

Learning Objectives 

• Use residuals, standard error, and r2 to assess the 
fit of a linear model. 

Introduction 

Now we move from calculating the residual for an individual data 
point to creating a graph of the residuals for all the data points. We 
use residual plots to determine if the linear model fits the data well. 

Residual Plots 

The graph below shows a scatterplot and the regression line for 
a set of 10 points. The blue points represent our original data set, 
that is, our observed values. The red points, lying directly on the 
regression line, are the predicted values. 
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The vertical arrows from the predicted to observed values 
represent the residuals. The up arrows correspond to positive 
residuals, and the down arrows correspond to negative residuals. 

Now consider the following pair of graphs. The top graph is a copy 
of the graph we looked at above. In the graph below, we plotted the 
values of the residuals on their own. (The explanatory variable is still 
plotted on the horizontal axis, though it is not indicated this here.) 
This is called a residual plot. 
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In the residual plot, each point with a value greater than zero 
corresponds to a data point in the original data set where the 
observed value is greater than the predicted value. Similarly, 
negative values correspond to data points where the observed value 
is less than the predicted value. 

What are we looking for in a residual plot? 
We use residual plots to determine if a linear model is 

appropriate. In particular, we look for any unexpected patterns in the 
residuals that may suggest that the data is not linear in form. 

To help us identify an unexpected pattern, we start by looking at 
what we expect to see in a residual plot when the form is linear. 
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Example 

No Pattern in Residual Plot 

Consider the pair of graphs below. Here we have a 
scatterplot for a data set consisting of 400 observations. 
The regression line is shown in the scatterplot. The residual 
plot is below the scatterplot. 
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In this example, the line in the scatterplot is a good 
summary of the positive linear pattern in the data. Notice 
that the points in the residual plot seem to be randomly 
scattered. As we examine the residuals from left to right, 
they don’t appear to follow a particular path, nor does the 
cloud of points widen or narrow in any systematic way. We 
see no particular pattern. Thus, in the ideal case, when a 
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linear model is really a good fit, we expect to see no pattern 
in the residual plot. 

Our general principle when looking at residual plots, then, is that a 
residual plot with no pattern is good because it suggests that our 
use of a linear model is appropriate. 

However, we must be flexible in applying this principle because 
what we see usually lies somewhere between the extremes of no 
pattern and a clear pattern. Let’s look at some specific examples. 

Example 

Patterns in Residual Plots 

At first glance, the scatterplot appears to show a strong 
linear relationship. The correlation is r = 0.84. However, 
when we examine the residual plot, we see a clear U-
shaped pattern. Looking back at the scatterplot, this 
movement of the data points above, below and then above 
the regression line is noticeable. The residual plot, 
particularly when graphed at a finer scale, helps us to focus 
on this deviation from linearity. 
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The pattern in the residual plot suggests that our linear 
model may not be appropriate because the model 
predictions will be too high for values in the middle of the 
range of the explanatory variable and too low for values at 
the two ends of that range. A model with a curvilinear form 
may be more appropriate. 
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Example 

Patterns in Residual Plots 2 

This scatterplot is based on datapoints that have a 
correlation of r = 0.75. In the residual plot, we see that 
residuals grow steadily larger in absolute value as we move 
from left to right. In other words, as we move from left to 
right, the observed values deviate more and more from the 
predicted values. Again, we have chosen a smaller vertical 
scale for the residual plot to help amplify the pattern to 
make it easier to see. 
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The pattern in the residual plot suggests that predictions 
based on the linear regression line will result in greater 
error as we move from left to right through the range of the 
explanatory variable. 
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Example 

Highway Sign Visibility 

Let’s return now to our original example and take a look 
at what the residual plot tell us about the appropriateness 
of applying a linear model to this data. 
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Note that the residuals are fairly randomly dispersed. 
However, they seem to be a bit more spread out on the left 
and right than they are in the middle. As we look at higher 
ages, there seems to be greater variation in the residuals, 
which suggests that we may want to be more cautious if we 
are trying to predict distances for older drivers. And the 
risks associated with extrapolation beyond the range of the 
data seem to be even greater here. In this case, we may still 
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use this linear model but condition the use of it on our 
analysis of the residual plot. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=83 

Here again are four scatterplots with regression lines shown and 
four corresponding residual plots. 
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66. Assessing the Fit of a Line 
(3 of 4) 

 

Learning Objectives 

• Use residuals, standard error, and r2 to assess the 
fit of a linear model. 

Introduction 

Here we continue our discussion of the question, How good is the 
best-fit line? 

Let’s summarize what we have done so far to address this 
question. We began by looking at how the predictions from the 
least-squares regression line compare to observed data. We defined 
a residual to be the amount of error in a prediction. Next, we created 
residual plots. A residual plot with no pattern reassures us that our 
linear model is a good summary of the data. 

But how do we know if the explanatory variable we chose is really 
the best predictor of the response variable? 

The regression line does not take into account other variables 
that might also be good predictors. So let’s investigate the question, 
What proportion of the variation in the response variable does our 
regression line explain? 

We begin our investigation with a scatterplot of the daily high 
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temperature (°F) in New York City from January 1 to June 1. We 
have 4 years of data (2002, 2003, 2005, and 2006). The least-squares 
regression line has the equation y = 36.29 + 0.25x, where x is the 
number of days after January 1. Therefore, January 1 corresponds to 
x = 0, and June 1 corresponds to x = 151. 

 
Two things stand out as we look at this picture. First, we see a 

clear, positive linear relationship tracked by the regression line. As 
the days progress, there is an associated increase in temperature. 
Second, we see a substantial scattering of points around the 
regression line. We are looking at 4 years of data, and we see a lot 
of variation in temperature, so the day of the year only partially 
explains the increase in temperature. Other variables also influence 
the temperature, but the line accounts only for the relationship 
between the day of the year and temperature. 

Now we ask the question, Given the natural variation in 
temperature, what proportion of that variation does our linear model 
explain? 

The answer, which is surprisingly easy to calculate, is just the 
square of the correlation coefficient. 
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The value of r2 is the proportion of the variation in the response 
variable that is explained by the least-squares regression line. 

In the present case, we have r = 0.73; therefore, 

. And so we say 

that our linear regression model explains 53% of the total variation 
in the response variable. Consequently, 47% of the total variation 
remains unexplained. 

Example 

Highway Sign Visibility 

 

Recall that the least-squares regression line is Distance = 
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576 − 3 * Age. The correlation coefficient for the highway 
sign data set is −0.793, so r2 = (−0.793)2 = 0.63. 

Our linear model uses age to predict maximum distance 
at which a driver can read a highway sign. Other variables 
may also influence reading distance. We can say the linear 
relationship between age and maximum reading distance 
accounts for 63% of the variation in maximum reading 
distance. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=84 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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Learn By Doing 

An interactive or media element has been 
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67. Assessing the Fit of a Line 
(4 of 4) 

 

Learning Objectives 

• Use residuals, standard error, and r2 to assess the 
fit of a linear model. 

Introduction 

Our final investigation into assessing the fit of the regression line 
focuses on typical error in the predictions. 

Previously, we calculated the error in a single prediction by 
calculating 

Residual = Observed value − Predicted value 
But we use the regression line to make predictions even when we 

do not have an observed value, so we need a method for using all of 
the residuals to compute a typical amount of error. 

We ask the question, How do we measure the typical amount of 
error for predictions from the regression line? 

The most common measure of the size of the typical error is the 
standard error of the regression, which is represented by se. It is 
calculated using the following formula: 
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where SSE stands for the sum of the squared errors. 
Finding the standard error of the regression is similar to finding 

the standard deviation of a distribution of data points from a single 
quantitative variable. In Summarizing Data Graphically and 
Numerically, we learned that the standard deviation is roughly a 
measure of average distance about the mean. Here the standard error 
is roughly a measure of the average distance of the points about the 
regression line. 

Let’s return to our example where age is used to predict the 
maximum distance for reading highway signs. 

The residual plot for the highway sign data set is shown below. We 
can visualize the SSE in the formula as simply the sum of the squares 
of all of the vertical (residual) line segments. After dividing by n − 2, 
we have the average squared residual. Taking the square root then 
gives us a measure of the average size of the residuals. 

 
In the case of the highway sign data, the value of se is 51.35. In the 

figure below, we added horizontal lines at y = 51.35 and y = −51.35, so 
the red line represents the typical size of the error. 
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Comment: When we mark the se on this residual plot, errors 

that fall outside of this range are larger than average. We see again 
that most of the errors that exceed ±51.35 are on the right. This 
illustrates that predictions of maximum reading distance for older 
drivers have larger error. 

Note: Most statistics software computes r and r2 and se. 
Therefore, our focus is not on calculating but on understanding and 
interpreting. 

Now let’s apply the standard error of the regression as a 
measurement of typical error. 

Example 

Highway Sign Visibility 

Let’s take another look at the prediction we made earlier 
using the regression line equation: 
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Distance = 576 + (−3 * Age) 

In a previous example, we predicted the maximum 
distance that a 60-year-old driver can read a highway sign. 
We plugged Age = 60 into the equation and found that 

Predicted distance = 576 + (−3 * 60) = 396 

The question we now ask is, How good is this prediction? 

Unfortunately, there is no 60-year-old driver in the 
original data set of 30 drivers, so we cannot calculate the 
residual. Instead, we use the se as a measurement of typical 
error. 

Technology gives se = 51.35. 

So how good is the prediction for the 60-year-old driver? 
Based on the se for this data, we estimate that our 
prediction of 396 feet is off by ±51 feet. 
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Intro 
grade(%) 

Upper 
grade(%) Predictions Error 

(Residual) 
Error 
Squared 

Student 
1 65 58 59.1 −1.1 1.21 

Student 
2 71 63 65.4 −2.4 5.76 

Student 
3 72 67 66.4 0.6 0.36 

Student 
4 72 77 66.4 10.6 112.36 

Student 
5 75 63 69.6 −6.6 43.56 

Student 
6 83 72 77.9 −5.9 34.81 

Student 
7 85 84 80 4 16 

Student 
8 88 83 83.2 −0.2 0.04 

Student 
9 94 89 89.5 −0.5 0.25 

Student 
10 96 93 91.5 1.5 2.25 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=85 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=85 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=85 

 
 

Let’s Summarize 

• When we use a regression line to make predictions, there is 
error in the prediction. We calculate this error as Observed 
data value − Predicted value. A residual is another name for 
the prediction error. 

• We use residual plots to determine whether a linear model is a 
good summary of the relationship between the explanatory 
and response variables. In particular, we look for any 
unexpected patterns in the residuals that may suggest the data 
is not linear in form. 

• We have two numeric measures to help us judge how well the 
regression line models the data. 

◦ The square of the correlation coefficient, r2, is the 

Assessing the Fit of a Line (4 of 4)  |  345

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=85#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=85#pb-interactive-content


proportion of the variation in the response variable that is 
explained by the least-squares regression line. 

◦ The standard error of the regression, se, gives a typical 
prediction error based on all of the data. It roughly 
measures the average distance of the data from the 
regression line. In this way, it is similar to the standard 
deviation, which roughly measures average distance from 
the mean. 
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68. Putting It Together: 
Examining Relationships: 
Quantitative Data 

 

Let’s Summarize 

• We use a scatterplot to graph the relationship between two 
quantitative variables. In a scatterplot, each dot represents an 
individual. We always plot the explanatory variable on the 
horizontal x-axis. 

• When we explore a relationship between two quantitative 
variables using a scatterplot, we describe the overall pattern 
(direction, form, and strength) and deviations from the pattern 
(outliers). 

• When the form of a relationship is linear, we use the 
correlation coefficient, r, to measure the strength and 
direction of the linear relationship. The correlation ranges 
between −1 an 1. If the pattern is linear, an r-value near −1 
indicates a strong negative linear relationship and an r-value 
near +1 indicates a strong positive linear relationship. Following 
are some cautions about interpreting correlation: 

◦ Always make a scatterplot before interpreting r. 
Correlation is affected by outliers and should be used only 
when the pattern in the data is linear. 

◦ Association does not imply causation. Do not interpret a 

Putting It Together: Examining
Relationships: Quantitative



high correlation between explanatory and response 
variables as a cause-and-effect relationship. 

◦ Beware of lurking variables that may be explaining the 
relationship seen in the data. 

• The line that best summarizes a linear relationship is the least-
squares regression line. The least-squares line is the best fit for 
the data because it gives the best predictions with the least 
amount of error. The most common measurement of overall 
error is the sum of the squares of the errors, SSE. The least-
squares line is the line with the smallest SSE. 

• We use the least-squares regression line to predict the value of 
the response variable from a value of the explanatory variable. 
Avoid making predictions outside the range of the data. (This 
is called extrapolation.) 

• We have two methods for finding the equation of the least-
squares regression line: Predicted y = a + b * x 

◦ We use technology to find the equation of the least-
squares regression line: Predicted y = a + b * x 

◦ We use summary statistics for x and y and the correlation. 
Using this method, we can calculate the slope b and the 
y-intercept a using the following: 

• The slope of the least-squares regression line is the average 
change in the predicted values when the explanatory variable 
increases by 1 unit. 

• When we use a regression line to make predictions, there is 
error in the prediction. We calculate this error as Observed 
value − Predicted value. This prediction error is also called a 
residual. 

• We use residual plots to determine whether a linear model is a 
good summary of the relationship between the explanatory 
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and response variables. In particular, we look for any 
unexpected patterns in the residuals that may suggest that the 
data is not linear in form. 

• We have two numeric measures to help us judge how well the 
regression line models the data: 

◦ The square of the correlation, r2 , is the proportion of the 
variation in the response variable that is explained by the 
least-squares regression line. 

◦ The standard error of the regression, se , gives a typical 
prediction error based on all of the data. It roughly 
measures the average distance of the data from the 
regression line. In this way, it is similar to the standard 
deviation, which roughly measures average distance from 
the mean. 
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69. StatTutor: Academic 
Performance 

You are now ready to do a lab exercise for this 
module. 

One of the first few screens in StatTutor will have a link to download 
the dataset for this StatTutor exercise. When you click that link, a 
pop-up window will appear asking if you want to open or save the 
file. Make sure you click “Save,” which will allow you to save the file 
to your hard drive. Then find the downloaded file and double-click it 
to open it if you’re using R, Minitab, Excel, or StatCrunch, or transfer 
it to your calculator if you’re using the TI Calculator. 

 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=87 

350  |  StatTutor: Academic
Performance

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=87#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=87#pb-interactive-content


70. Assignment: Scatterplot 

 
In this exercise we will: 

• Learn how to create a scatterplot. 
• Use the scatterplot to examine the relationship between two 

quantitative variables. 
• Learn how to create a labeled scatterplot. 
• Use the labeled scatterplot to better understand the form of a 

relationship. 

In this activity we explore the relationship between weight and 
height for 81 adults. We will use height as the explanatory variable. 
Weight is the response variable. 

We will then label the men and women by adding the categorical 
variable gender to the scatterplot. We will see if separating the 
groups contributes to our understanding of the form of the 
relationship between height and weight. 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 
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Question 1: 

Describe the relationship between the height and weight of the 
subjects. To describe the relationship write about the pattern 
(direction, form, and strength) and any deviations from the pattern 
(outliers). 

So far we have studied the relationship between height and 
weight for all of the males and females together. It may be 
interesting to examine whether the relationship between height and 
weight is different for males and females. To visualize the effect of 
the third variable, gender, we will indicate in the scatterplot which 
observations are males and which are females. 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 2: 

Compare and contrast the relationship between height and weight 
for males and females. To compare and contrast the relationships by 
gender write about the pattern (direction, form, and strength) and 
any deviations from the pattern (outliers) for each group. 

Discuss how the patterns for the two groups are similar and how 
they are different. 
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71. Assignment: Linear 
Relationships 

 
In this activity we will: 

• Learn how to compute the correlation. 
• Practice interpreting the value of the correlation. 
• See an example of how including an outlier can increase the 

correlation. 

Recall the following example: The average gestation period, or time 
of pregnancy, of an animal is closely related to its longevity—the 
length of its lifespan. Data on the average gestation period and 
longevity (in captivity) of 40 different species of animals have been 
recorded. 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 
Remember that the correlation is only an appropriate measure 

of the linear relationship between two quantitative variables. First 
produce a scatterplot to verify that gestation and longevity are 
nearly linear in their relationship. 
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Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 
Observe that the relationship between gestation period and 

longevity is linear and positive. Now we will compute the correlation 
between gestation period and longevity. 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 1: 

Report the correlation between gestation and longevity and 
comment on the strength and direction of the relationship. 
Interpret your findings in context. 

Now return to the scatterplot that you created earlier. Notice that 
there is an outlier in both longevity (40 years) and gestation (645 
days). Note: This outlier corresponds to the longevity and gestation 
period of the elephant. 

What do you think will happen to the correlation if we remove this 
outlier? 
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Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 2: 

Report the new value for the correlation between gestation and 
longevity and compare it to the value you found earlier when the 
outlier was included. What is it about this outlier that results in the 
fact that its inclusion in the data causes the correlation to increase? 
(Hint: look at the scatterplot.) 

Comment 

In the last activity, we saw an example where there was a positive 
linear relationship between the two variables, and including the 
outlier just “strengthened” it. Consider the hypothetical data 
displayed by the following scatterplot: 
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In this case, the low outlier gives an “illusion” of a positive linear 
relationship, whereas in reality, there is no linear relationship 
between X and Y. 
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72. Assignment: Linear 
Regression 

 
In this activity we will: 

• Find a regression line and plot it on the scatterplot. 
• Examine the effect of outliers on the regression line. 
• Use the regression line to make predictions and evaluate how 

reliable these predictions are. 

Background 

The modern Olympic Games have changed dramatically since their 
inception in 1896. For example, many commentators have remarked 
on the change in the quality of athletic performances from year to 
year. Regression will allow us to investigate the change in winning 
times for one event—the 1,500 meter race. 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 
Observe that the form of the relationship between the 1,500 

meter race’s winning time and the year is linear. The least squares 
regression line is therefore an appropriate way to summarize the 
relationship and examine the change in winning times over the 
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course of the last century. We will now find the least squares 
regression line and plot it on a scatterplot. 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 1: 

Give the equation for the least squares regression line, and interpret 
it in context. 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 2: 

Give the equation for this new line and compare it with the line 
you found for the whole dataset, commenting on the effect of the 
outlier. 
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Question 3: 

Our least squares regression line associates years as an explanatory 
variable, with times in the 1,500 meter race as the response variable. 
Use the least squares regression line you found in question 2 to 
predict the 1,500 meter time in the 2008 Olympic Games in Beijing. 
Comment on your prediction. 

Assignment: Linear Regression  |  359





PART IV 

CHAPTER 4: NONLINEAR 
MODELS 
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73. Why It Matters: Nonlinear 
Models 

 
Before we begin Nonlinear Models, let’s see how the new ideas 

in this module relate to what we learned in the previous modules, 
Types of Statistical Studies and Producing Data, Summarizing Data 
Graphically and Numerically, and Examining Relationships: 
Quantitative Data. 

Recall the Big Picture: 
We begin a statistical investigation with a research question. The 

investigation proceeds with the following steps: 

• Produce Data: Determine what to measure, then collect the 
data. ← Types of Statistical Studies and Producing Data 

• Explore the Data: Analyze and summarize the data. ← 
Summarizing Data Graphically and Numerically, Examining 
Relationships: Quantitative Data, Nonlinear Models 

• Draw a Conclusion: Use the data, probability and statistical 
inference to draw a conclusion about the population. 

Types of Statistical Studies and Producing Data focused on methods 
for collecting reliable data. Summarizing Data Graphically and 
Numerically focused on summarizing and analyzing data for a 
quantitative variable. Examining Relationships: Quantitative Data 
focused on linear relationships between two quantitative variables. 
In Nonlinear Models, we focus on nonlinear relationships between 
two quantitative variables. In the Big Picture of Statistics, the 
material in this module is still part of exploratory data analysis. 
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74. Introduction: Exponential 
Relationships 

What you’ll learn to do: Use an exponential 
model (when appropriate) to describe the 
relationship between two quantitative variables. 
Interpret the model in context. 

LEARNING OBJECTIVES 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 
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75. Exponential Relationships 
(1 of 6) 

 

Learning Objectives 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 

In our first example of exponential relationships, we investigate a 
nonlinear model for growth in a population over time. 
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Example 

The Return of the Bald Eagle 

During the mid-20th century, the population of bald 
eagles in the lower 48 states declined substantially. A highly 
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toxic pesticide, DDT, was the main cause of the decline. 
DDT causes damage to bird egg shells. By 1963, bald eagles 
were in danger of complete extinction. Only 417 pairs of 
bald eagles remained. In 1967, the bald eagle became an 
official endangered species. Then in 1972, the EPA banned 
the use of DDT in the United States. The impact of the ban 
was a dramatic turnaround in the fate of the bald eagle. 

Here is the data. Note that in the table, we defined t, our 
explanatory variable, to be Years after 1950. The response 
variable is the number of bald eagle pairs that are mating. 

Our goal is to find an equation to model this relationship. 
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Here is a scatterplot of the data. We can see that the 
relationship appears somewhat linear, particularly for years 
after 1980 (t = 30). The correlation coefficient for this data 
set is high, r = 0.914. 

The least squares regression line is Predicted eagle pairs 
= −3,878.11 + 185.4t. Below is a scatterplot of the data with 
the least-squares regression line and the residual plot. 
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We see a clear pattern in the residuals, suggesting that a 
linear model does not capture patterns in the data. 
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Note: This is a reminder that a large r-value does not 
guarantee that a linear model is a good fit. 

Conclusion: The data set for eagle pairs is clearly 
nonlinear. We need a better model. 

In the scatterplot below, we fit an exponential model to 
the data. Notice how well this model describes the 
relationship between the variables. There is very little 
scatter about the exponential curve. There is a strong, 
positive exponential relationship between these variables. 

The equation of the exponential model is Predicted eagle 
pairs = 121 (1.083)t. 

Note: In this equation, the t-variable is an exponent. 
Sometimes you will see this written with the caret symbol: 
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^. So Predicted y = 121 (1.083)t and Predicted y = 121(1.083) ^ 
t mean the same thing. 

Now we use the exponential model to make predictions 
about the number of bald eagle mating pairs. We also 
compare the predictions from the exponential model to the 
linear model. Because there is a strong exponential 
relationship and a weaker linear relationship in the data, we 
expect the predictions from the exponential model to be 
better. 

In 1963 (t = 13), there were 417 mating pairs. 

• According to the linear model: Predicted eagle pairs 
= –3,878.11 + 185.4 (13) = (–1,468). Obviously, a negative 
value does not make sense for a count of eagle pairs. 

• According to the exponential model: Predicted eagle 
pairs = 121 (1.083)13 = 341. So the exponential model 
underestimates by 417 – 341 = 76 mating pairs. But this 
is a much better prediction than we got from the 
linear model. 

In 2000 (t = 50), there were 6,471 mating pairs. 

• According to the linear model: Predicted eagle pairs 
= –3,878.11 + 185.4 (50) = 5,392. So the linear model 
underestimates by 6,471 – 5392 = 1,079 mating pairs. 

• According to the exponential model: Predicted eagle 
pairs = 121 (1.083)50 = 6,519. So the exponential model 
overestimates by 6,591 – 6,471 = 48 mating pairs. This 
is a much better prediction than we got from the 
linear model. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=94 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=94 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=94 
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76. Exponential Relationships 
(2 of 6) 

 

Learning Objectives 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 

Now we investigate what the numbers in the exponential model tell 
us. 

Example 

Understanding the Numbers in the 
Exponential Model 

Our goal in this example is to understand the meaning of 
the numbers 121 and 1.083 in the exponential model for 
predicting the number of eagle mating pairs. 

Predicted eagle pairs = 121 (1.083)t 
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The 121 is the initial value for the exponential model. It is 
the predicted value for y when t = 0. It is also the 
y-intercept, where the exponential model crosses the y-
axis. 

• To see this, plug t = 0 into the exponential model: 
Predicted eagle pairs = 121 (1.083)0 = 121 (1) = 121. 

• Interpretation in context: When t = 0, the year is 
1950. In 1950, the number of eagle mating pairs is 
predicted to be 121. 

Note: A number with an exponent of 0 is equal to 1. For 
example, 20 = 1 and 1.51200 = 1. (This is not true for 0: 00 is 
not defined.) 

Now let’s investigate the meaning of 1.083 in the context 
of eagle mating pairs. 

For 1951, when t = 1, the model predicts 

ŷ  pairs of eagles that are 

mating. 

For 1952, when t = 2, there are 

ŷ  pairs. 

We can also view the calculation for t = 2 as repeated 
multiplication by 1.083: 

Note: From this viewpoint, we find the estimated number 
of mating pairs for 1952 by multiplying the estimated 131 
pairs from the previous year by 1.083. 

Here is another example: For 1953, when t = 3, we can 
rewrite (1.083)3 as repeated multiplication: 
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(1.083)(1.083)(1.083). The exponent 3 tells us to multiply the 
initial value 121 by 1.083 three times. 

Note: We can also view this process as multiplying the 
estimated 142 eagle pairs from the previous year by 1.083. 

In general, to find the number of mating pairs for the 
next year, we multiply the previous year’s estimate by 1.083. 
We call this the growth factor. 

We view the growth factor as containing information 
about the percentage increase in the population over the 
previous year. To see how this works, let’s start with a 
hypothetical situation in which there is no change in the 
number of eagle mating pairs from one year to the next. 
Then we look at different percentages of growth for the 
first year to build to an understanding of the meaning of 
1.083: 

No change in the number of eagle pairs: If there is no 
change in a year, we have 100% of the mating pairs from the 
previous year. The growth factor is 1.00, which is 100% 
written in decimal form. This is important to understand. A 
growth factor of 1.00 means no growth. This makes sense 
because 121(1.00) = 121; there is no change when we multiply 
by 1.00. 

5% growth in the first year: 

• 100% of the mating pairs + 5% increase in mating 
pairs = 105%. 

• Convert to decimal form to find the growth factor: 
105% = 1.05. 

• Now multiply the growth factor by 121 to find the 
number of mating pairs for the next year: 121(1.05) = 
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127. 

If we multiply by 1.05, this is a 5% increase. 

6.8% growth in the first year: 

• 100% of the mating pairs + 6.8% increase in mating 
pairs = 106.8%. 

• Convert to decimal form to find the growth factor: 
106.8% = 1.068. 

• Now multiply the growth factor by 121 to find the 
number of mating pairs for the next year: 121(1.068) = 
129. If we multiply by 1.068, this is a 6.8% increase. 

What is the meaning of 1.083 in the model Predicted 
eagle pairs = 121 (1.083)t? 

Answer: The 1.083 is the growth factor; as a percentage, 
it is 108.3%. We view 108.3% as 100% + 8.3%. There is an 
estimated 8.3% increase in the number of eagle pairs each 
year. (Remember, the 100% represents no change in the 
population.) 

 

 Spotlight on Converting Percentages 

Percent means “per 100.” So a percent means “divide 
by 100.” 
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To convert from a percent to the decimal form, divide 
by 100. 

• For example, 105% means 105 ÷ 100 = 1.05, so 
105% = 1.05 

• 106.8% means 106.8 ÷ 100 = 1.068, so 106.8% = 
1.068 

• 96.8% means 96.8 ÷ 100 = .968, so 98.6% = 0.968 
• Notice that dividing by 100 moves the decimal 

two places to the left. 

To convert from a decimal form to a percent, we are 
converting in the opposite direction, so multiply by 100. 

• To convert 1.03 to a percent: 1.03 x 100 = 103, so 
1.03 = 103% 

• To convert 1.083 to a percent: 1.083 x 100 = 
108.3, so 1.083 = 108.3% 

• To convert 0.834 to a percent: 0.834 x 100 = 
83.4, so 0.834 = 83.4% 

• Notice that multiplying by 100 moves the 
decimal two places to the right. 

Note: A number is in “decimal form” when it is not a 
percentage. A percentage like 108.3% is not in “decimal 
form” even though it has a decimal in the number. 

 

 

378  |  Exponential Relationships (2 of 6)



Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=95 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=95 
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77. Exponential Relationships 
(3 of 6) 

 

Learning Objectives 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 

Let’s summarize what we have learned about exponential growth 
models: 

The general form of an exponential growth model is y = C · bx. 

• C is the initial value. It is the y-value when x = 0. It is also the 
y-intercept. 

• b is the growth factor; it will always be greater than 1 in cases 
of growth. From the growth factor, we can determine the 
percentage increase in y for each additional 1 unit increase in 
x. 

Let’s compare the general form of an exponential growth model to 
the general form for a linear model: y = a + bx. 

• In the linear model, a is the initial value. It is the y-value when 
x = 0. It is also the y-intercept. 

• b is the slope. From the slope, we can determine the amount 
and direction the y-value changes for each additional 1 unit 
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increase in x. 

Now we apply what we have learned about exponential growth to 
find a model for a set of data. 

In this activity, you use a simulation to find an exponential model 
that fits the population growth of Kenya. 

Here are the data graphed in the scatterplot in the simulation. 

Notice that the Kenyan population growth has a strong positive 
exponential form. Use the sliders in the simulation to adjust the 
values of C and b to find a reasonable exponential model that fits 
this data. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=96 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=96 
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78. Exponential Relationships 
(4 of 6) 

 

Learning Objectives 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 

We now investigate an exponential model for decline in a 
population over time. 
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Example 

Winter-run Chinook Salmon on the 
Sacramento River 

 

The U.S. Endangered Species Act lists nine populations of 
Chinook salmon as either threatened or endangered. One 
such population is the winter-run Chinook salmon of the 
Sacramento River in northern California. The Chinook was 
first listed as endangered in 1994. 

A number of factors contributed to the decline of the 
Chinook on the Sacramento River. Chief among these was 
the construction of the Red Bluff Diversion Dam in 1967. 
The dam deprived a large number of adult salmon access to 
necessary coldwater spawning grounds. 

Researchers collected data on the Chinook population at 
the Red Bluff Dam. This data suggests that the population 
declined from about 40,000 in 1970 to below 200 in 1994. 
Click here to see the data. 
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Here is a scatterplot of the data for the years 1970 
through 1994. The scatterplot has a nonlinear form with a 
negative association between the variables. In other words, 
we see that the population is declining. 

 

Note: We defined t, our explanatory variable, to be 
Number of years after 1970. The response variable is the 
Number of Chinook salmon present in the Sacramento River. 

Our goal is to model the decline of the Sacramento River 
Chinook population. 

In the scatterplot below, we fit an exponential model to 
the data for the years 1970 through 1994. Notice that this 
model summarizes the pattern in the data, but the 
relationship is not as strong as we saw in the eagle data. 
There is more scatter about the exponential curve. 
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The equation of the exponential model is Predicted 
Chinook population = 49,304 (0.854)t. 

Now we use the exponential model to make predictions 
about the Chinook population. We expect fairly large 
prediction errors because the association is not strong. 

In 1994 (t = 24), there were 186 Chinook salmon in the 
Sacramento River, according to the data. 

According to the model: Predicted Chinook population = 
49,304 (0.854)24 = 1,117. 

The exponential model overestimates the number of 
Chinook salmon by 1,117 − 186 = 931 for that year. We can tell 
from the graph that this prediction error is small relative to 
the prediction error for most of the other years. (The data 
point for 1994, when t = 24, is much closer to the curve than 
are other data points.) 

In 2003 (t = 33), there were 9,757 Chinook, according to 
the data. 
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According to the model: Predicted Chinook population = 
49,304 (0.854)33 = 270. 

The exponential model underestimates the number of 
Chinook by 9,757 − 270 = 9,487. This is a huge prediction 
error. But wait – this is an example of extrapolation: 2003 
falls outside of the range of the data used to find the model. 
The model gives unreliable estimates for years outside the 
range of 1975 through 1994. If you look at the data table, you 
will see that the Chinook population started to increase 
again after 1994, with large increases in 2002 and 2003. 
Because the pattern changes after 1994, this exponential 
model gives unreliable predictions for years after 1994. 
(This turnaround was the result of the removal of two dams 
on the Sacramento River and opening the dam gates for 8 
months a year at the Red Bluff Diversion Dam to allow for 
fish migration to winter spawning areas.) 

Note: In Examining Relationships: Quantitative Data, we 
investigated techniques for assessing the fit of a linear 
model, such as residual plots, r2 and se. We do not formally 
investigate residuals for exponential functions in this 
course. We also do not develop formal techniques for 
assessing the fit of an exponential model. 
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79. Exponential Relationships 
(5 of 6) 

 

Learning Objectives 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 

The exponential model used in the Chinook salmon example showed 
a decline over the years and a negative association between the 
variables; we call such a model an exponential decay model. 
(Compare this model to the exponential growth model we 
investigated earlier with the eagle pairing data.) 

Now we investigate the meaning of the numbers in the 
exponential decay model. 

Example 

Understanding the Numbers in the 
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Exponential Decay Model 

Our goal in this example is to understand the meaning of 
the numbers 49,304 and 0.854 in the exponential model for 
predicting the Chinook population. 

Predicted Chinook population = 49,304 (0.854)t 

As before, the 49,304 is the initial value for the 
exponential model. It is the predicted value for y when t = 0. 

• To see this, plug t = 0 into the exponential model: 
Predicted Chinook population = 49,304 (0.854)t 

• Interpretation in context: When t = 0, the year is 
1970. In 1970, the predicted number of Chinook is 
49,304. 

• It is also the y-intercept where the exponential 
model crosses the y-axis. 

Now let’s investigate the meaning of 0.854 in the context 
of Chinook population. 

For 1971, when t = 1, the model predicts y = 49,304 (0.854)1 

= 42,106 Chinook salmon in the Sacramento River. 

For 1972, when t = 2, the model predicts y = 49,304 
(0.854)2 = 35,958 Chinook. 

We can also view the calculation for t = 2 as repeated 
multiplication by 0.854: 

Note: From this viewpoint, we find the Chinook 
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population for 1972 by multiplying the 42,106 Chinook from 
the previous year by 0.854. 

Here is another example: For 1973, when t = 3, we can 
rewrite (0.854)3 as repeated multiplication: 
(0.854)(0.854)(0.854). The exponent 3 tells us to multiply the 
initial value 49,304 by 0.854 three times. 

Note: We can also view this process as multiplying the 
estimated 35,985 Chinook from the previous year by 0.854. 

In general, to find the estimated number of Chinook for 
the next year, we multiply the previous year’s estimated 
population by 0.854. We call this the decay factor. 

We view the decay factor as containing information about 
the percentage decrease in the population over the 
previous year. To see how this works, let’s start with a 
hypothetical situation in which there is no change in the 
number of Chinook from one year to the next. Then we 
look at different percentages of decay for the first year to 
build to an understanding of the meaning of 0.854. This is 
the same type of thinking we performed to analyze the 
exponential growth model previously. 

No change in the number of Chinook: If there is no 
change in a year, we have 100% of the fish from the 
previous year, so the decay factor is 1.00, which is 100% 
written in decimal form. As before, this is important to 
understand. A decay factor of 1.00 means no decline in the 
population. This makes sense because 49,304 (1.00) = 
49,304; there is no change when we multiply by 1.00. 

5% decay in the first year: 
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• 100% of the Chinook – 5% decrease in the Chinook 
= 95% remaining. 

• Convert to decimal form to find the decay factor: 
95% = 0.95. 

• Now multiply the decay factor by 49,304 to find the 
number of Chinook for the next year: 49,304(0.95) = 
46,839 

• So, if we multiply by 0.95, this is a 5% decrease. 

6.8% decay in the first year: 

• 100% of the Chinook – 6.8% decrease in the 
Chinook = 93.2% remaining. 

• Convert to decimal form to find the decay factor: 
93.2% = 0.932. 

• Now multiply the decay factor by 49,304 to find the 
number of Chinook for the next year: 49,304 (0.932) = 
45,951 

• So, if we multiply by 0.932, this is a 6.8% decrease. 

What is the meaning of 0.854 in the model Predicted 
Chinook population = 49,304 (0.854)t? 

Answer: The 0.854 is the decay factor; as a percentage, it 
is 85.4%. This tells us that 85.4% of the previous year’s 
Chinook population are here this year. To determine the 
percent decrease, calculate 100% – 85.4% = 14.6%. There is 
an estimated 14.6% decrease in the number of Chinook 
each year. (Remember the 100% represents no change in 
the population.) 

Exponential Relationships (5 of 6)  |  391



Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=98 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=98 

392  |  Exponential Relationships (5 of 6)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content


Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=98 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=98 

 

Exponential Relationships (5 of 6)  |  393

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=98#pb-interactive-content


80. Exponential Relationships 
(6 of 6) 

 

Learning Objectives 

• Use an exponential model (when appropriate) to 
describe the relationship between two quantitative 
variables. Interpret the model in context. 

Now we apply what we have learned about exponential decay to find 
a model for a set of data. We use a simulation to find appropriate 
values for C and b. 

Here are the data we will investigate. 
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This table shows the data values, where x is the feet below the 
surface of the water and y is the predicted light intensity measured 
in lumens in a lake. We can see in the data that the amount of light 
transmitted through water decreases with depth. There is less light 
at greater depths. 

Here are the data graphed in the scatterplot in the simulation. 
Notice that the light intensity has a fairly strong negative 
exponential form. Use the sliders in the simulation to adjust the 
values of C and b to find a reasonable exponential model that fits 
this data. 

Click here to open this simulation in its own window. 
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81. Putting It Together: 
Nonlinear Models 

 

Let’s Summarize 

This is what we have learned about exponential models: 
The general form of an exponential model is y = C · bx. 

• Exponential models are nonlinear. More specifically, 
exponential models predict that y increases or decreases by a 
constant percentage for each 1-unit increase in x. 

• C is the initial value. It is the y-value when x = 0. It is also the 
y-intercept. 

• b is the growth factor or decay factor. b is always positive. 

◦ If b is greater than 1, b is a growth factor. In this case, the 
association is positive, and y is increasing. This makes 
sense because multiplying by a number greater than 1 
increases the initial value. From the growth factor, we can 
determine the percent increase in y for each additional 
1-unit increase in x. 

◦ Similarly, if b is greater than 0 and less than 1, b is a decay 
factor. In this case, the association is negative, and y is 
decreasing. From the decay factor, we can determine the 
percentage decrease in y for each additional 1-unit increase 
in x. 
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Let’s compare the general form of an exponential model to the 
general form for a linear model: y = a + bx. 

• In the linear model, a is the initial value. It is the y-value when 
x = 0. It is also the y-intercept. 

• b is the slope. From the slope, we can determine the amount 
and direction the y-value changes for each additional 1-unit 
increase in x. When b is positive, there is a positive association, 
and y increases. When b is negative, there is a negative 
association, and y decreases. 
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82. Why It Matters: 
Relationships in Categorical 
Data with Intro to 
Probability 

 
Before we begin Relationships in Categorical Data with Intro to 

Probability, it is helpful to consider how it relates to the work we 
have already done in previous modules. 

At the start of Summarizing Data Graphically and Numerically, 
we stated the difference between quantitative and categorical 
variables: 

• Quantitative variables have numeric values that can be 
averaged. A quantitative variable is frequently a measurement 
– for example, a person’s height in inches. 

• Categorical variables are variables that can have one of a 
limited number of values, or labels. Values that can be 
represented by categorical variables include, for example, a 
person’s eye color, gender, or home state; a vehicle’s body style 
(sedan, SUV, minivan, etc.); a dog’s breed (bulldog, greyhound, 
beagle, etc.). 

The remainder of Summarizing Data Graphically and Numerically 
focused on describing the overall pattern (shape, center, and 
spread) of the distribution of a quantitative variable. 

In and Examining Relationships: Quantitative Data and Nonlinear 
Models, our goal was to identify and model the relationship between 
two quantitative variables. 

Now, in this module, we turn our full attention back to categorical 

Why It Matters: Relationships in
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variables. Our objective is to study the relationship between two 
categorical variables. Just as in Examining Relationships: 
Quantitative Data and Nonlinear Models, we will be looking for 
patterns in the data. 

As we organize and analyze data from two categorical variables, 
we make extensive use of two-way tables. Two-way tables for two 
categorical variables are in some ways like scatterplots for two 
quantitative variables: they give us a useful snapshot of all of the 
data organized in terms of the two variables of interest. This will be 
helpful in finding and comparing patterns. This part of Relationships 
in Categorical Data with Intro to Probability is exploratory data 
analysis in the Big Picture of Statistics. 

A second important objective of this module is to introduce you 
to the concept of probability. Two-way tables give us a practical 
context for talking about probability. We also use two-way tables 
to help us visualize and solve real-world problems involving 
probability. This part of the module is part of probability in the Big 
Picture of Statistics. 
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83. Introduction: Two-Way 
Tables 

What you’ll learn to do: Analyze the relationship 
between two categorical variables using a 
two-way table. 

LEARNING OBJECTIVES 

• Analyze the relationship between two categorical 
variables using a two-way table. 

• Calculate marginal, joint, and conditional 
percentages and interpret them as probability 
estimates. 

• Analyze and compare risks using conditional 
probabilities. 

• Create a hypothetical two-way table to answer 
more complex probability questions. 
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84. Two-Way Tables (1 of 5) 

 

Learning Objectives 

• Analyze the distribution of a categorical variable. 
• Analyze the relationship between two categorical 

variables using a two-way table. 

We begin our discussion by analyzing the distribution of a single 
categorical variable. Then we focus on analyzing the association 
between two categorical variables. 

Example 

Body Image 

What is your perception of your own body? Do you feel 
that you are overweight, underweight, or about right? A 
random sample of 1,200 U.S. college students answered this 
question as part of a larger survey. The following table 
shows part of the responses: 
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Student Body Image 

student 25 overweight 

student 26 about right 

student 27 underweight 

student 28 about right 

student 29 about right 

Here are the questions we investigate: 

• What percentage of students in the sample fall into 
each category? 

• How are students divided across the three body 
image categories? 

• Is there a pattern in the responses? 
• Which response is the most common? 

It is difficult to answer these questions by looking at the 
raw data because the raw data is a long list of 1,200 
responses. We cannot see patterns easily by looking at a 
list, so we summarize the distribution in a table. 

Recall from Summarizing Data Graphically and 
Numerically that in a graph that summarizes the 
distribution of a quantitative variable, we can see 

• the possible values of the variable. 
• the number of individuals with each variable value 

or interval of values. 

Here we use a table instead of a graph to summarize the 
distribution of a categorical variable. We create a table so 
we can see 
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• the different values (categories) the variable takes. 
• how many times each value occurs (count) and, 

more important, how often each value occurs (by 
converting the counts to proportions). 

Here is the table for our example: 

Category Coun
t Proportion Percentage 

underweight 110 110/1,200 = 0.092 9.2% 

overweight 235 235/1,200 = 0.196 19.6% 

about right 855 855/1,200 = 0.713 71.3% 

We can use a stacked bar chart to display the distribution 
of the body image variable. Note that this distribution is 
completely described by the three percentages 9.2%, 19.6%, 
and 71.3%, which correspond to the three categories of the 
body image variable: “underweight,” “overweight,” and 
“about right.” The percentages add to 100% because all 
1,200 individual responses fall into one of these three 
categories. (Note that the percentages actually add up to 
99.9% because we rounded percentages to three decimal 
places.) 
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Now that we have summarized the distribution of values in the body 
image variable, let’s go back and interpret the results in the context 
of the questions we posed. 
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Example 

Two-Way Table for Body Image and 
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Gender 

Once we’ve interpreted the results, another interesting 
question arises: If we separate our sample by gender and 
compare the male and female responses, will we find a 
similar distribution across body image categories? Or is there 
a difference based on gender? 

Answering these questions requires us to examine the 
relationship between two categorical variables: gender and 
body image. We want to determine if gender explains the 
differences in body image responses. Therefore, 

• the explanatory variable is gender, and 
• the response variable is body image. 

Here is part of the raw data for body image and gender of 
each student: 

Student Gender Body Image 

student 25 M overweight 

student 26 M about right 

student 27 F underweight 

student 28 F about right 

student 29 M about right 

Once again, the raw data is a long list of 1,200 responses. 
We need to organize the information in a table so we can 
more easily compare the results for females and males. To 
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summarize the relationship between two categorical 
variables, we create a display called a two-way table. 

Here is the two-way table for our example: 

About 
Right 

Overwei
ght 

Underwei
ght 

Row 
Totals 

Female 560 163 37 760 

Male 295 72 73 440 

Column 
Totals 855 235 110 1,200 

Let’s take a closer look at this table: 

The table helps us to compare females to males because 
there is a row for each gender. The body image categories 
are the columns. As we move across a particular row, all of 
the individuals are of the same gender. And as we move 
down a particular column, all of the individuals have the 
same body image. 

We also added a row at the bottom and a column at the 
right, which we call the margins of the table. The numbers 
in the margins are totals for each row or column. 

In the following table, look at the numbers in the Female 
row and note that their sum, 560 + 163 + 37 = 760, is 
displayed in the margin at the right labeled Row Totals. 
There are 760 females in the sample. 
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About 
Right 

Overwei
ght 

Underwei
ght 

Row 
Totals 

Female 560 163 37 760 

Male 295 72 73 440 

Column 
Totals 855 235 110 1,200 

Likewise, in the next table, look at the numbers in the 
Overweight column and note that their sum, 163 + 72 = 235, 
is displayed in the margin at the bottom of the table labeled 
Column Totals. There are 235 students in the sample who 
answered “overweight” to the body image question. 

About 
Right 

Overwei
ght 

Underwei
ght 

Row 
Totals 

Female 560 163 37 760 

Male 295 72 73 440 

Column 
Totals 855 235 110 1,200 

Where a row and column cross, we see the number of 
individuals who fit both descriptions: a particular gender 
and a particular body image. It may be helpful to think of 
the six inner cells as six rooms filled with the 1,200 students 
from the sample. For example, in one room are the 72 males 
who think of themselves as overweight. In another room, 
we have 37 females who think of themselves as 
underweight. (Maybe they should have a potluck and get to 
know each other.) 
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So far we have organized the raw data in a much more informative 
display – the two-way table. But we have not answered our primary 
question: Is body image related to gender? 

Exploring the relationship between two categorical variables (in 
this case, body image and gender) amounts to comparing the 
distributions of the response variable (in this case, body image) for 
different values of the explanatory variable (in this case, male vs. 
female). 

We do this in the next example. 
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Example 

Is Body Image Related to Gender? 

Here we have removed the column totals from the table 
because gender is the explanatory variable. We compare 
females with particular body image responses to males with 
the same response, so we need to know the total numbers 
of females and males. We no longer need to know the total 
number of students for each body image category. 

Note that there are more females than males, so when we 
compare females to males, it is misleading to compare raw 
counts in each body image category. For example, it is 
misleading to say, “Five-hundred sixty females responded 
‘about right’ compared to only 295 males,” because the 
sample includes a lot more females than males. Instead, we 
compare the percentage of females who responded “about 
right” to the percentage of males who responded “about 
right”: 

• Of the 760 females, 560 responded “about right”: 
560 ÷ 760 = 0.737 = 73.7% 

• Of the 440 males, 295 responded “about right”: 295 
÷ 440 = 0.67 = 67% 
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We can interpret percentages as “a number out of 100,” so 
by converting to percentages, we are reporting the results 
as though there are 100 females and 100 males. We can see 
that a higher percentage of females feel “about right” about 
their body weight. 

In general, we need to supplement our display, the two-
way table, with numeric summaries that allow us to 
compare the distributions. Therefore, we always convert 
counts to percentages. 

Note: It is important to identify the explanatory variable 
because we always use the totals for the explanatory 
variable to calculate the percentages. 

In our example, we look at each gender separately and 
convert the counts to percentages within each gender. In 
the Female row, we divide each count by 760, the total 
number of females. In the Male row, we divide each count 
by 440, the total number of males. The resulting 
percentages are shown in the following table: green for 
females, black for males. We call these conditional 
percentages. The percentages in green are the distribution 
of body image based on the condition that students are 
female. The percentages in black are the distribution of 
body image based on the condition that students are male.
Thus, our two sets of conditional percentages form two 
conditional distributions for body image. 

About 
Right 

Overwei
ght 

Underwei
ght 

Row 
Totals 

Fem
ale 

560/760 
= 73.7% 

163/760 
= 21.4% 

37/760 
=4.9% 

760/760 
= 100% 

Mal
e 

295/440 
= 67% 

72/440 = 
16.4% 

73/440 = 
16.6% 

440/440 
= 100% 
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Here is a side-by-side display comparing the conditional 
body image distributions for females and males. 

Now that we summarized the relationship between the 
categorical variables gender and body image, we use the 
next activity to interpret the results in the context of the 
questions we posed. 
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At the start of this example, we asked the following 
questions: 

If we separate our sample by gender and compare the male 
and female responses, will we find a similar distribution 
across body image categories? Or is there a difference based 
on gender? 

As a result of our analysis, we know that the conditional 
distributions for males and females for body image are not 
the same. And there is enough of a difference to believe 
that these two categorical variables are in fact related. 

In the next activity, we practice investigating the 
relationship between two different categorical variables. 

We investigate this question in the next activity: Is there a 
relationship between smoking rates and college programs? 
Researchers sent an online health behavior survey to 25,000 college 
students in 2009. The following table summarizes results based on 
6,055 student responses. (C. J. Berg, C. M. Klatt, J. L. Thomas, J. 
S. Ahluwalia, and L. C. An, “The Relationship of Field of Study to 
Current Smoking Status among College Students,” College Student 
Journal 43(3):744–754, 2009.) 
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Smoked in Last 
30 Days 

Did Not Smoke in Last 
30 Days 

Art, design, 
performing arts 149 336 485 

Humanities 197 454 651 

Communication, 
languages 233 389 622 

Education 56 170 226 

Health Sciences 227 717 944 

Math, engineering, 
sciences 245 924 1,169 

Social science, human 
services 306 593 899 

Independent study 134 260 394 

Undeclared 176 489 665 

1,723 4,332 6,055 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=104 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=104 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=104 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=104 

In the next activity, we investigate whether health insurance 
coverage differs by geographic region. The U.S. government collects 
information on Americans who do not have health insurance. Here 
is the data: 

420  |  Two-Way Tables (1 of 5)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=104#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=104#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=104#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=104#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=104#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=104#pb-interactive-content


Region Uninsured Insured Row Totals 

Northeast 6,782 47,043 53,825 

Midwest 7,757 57,135 64,892 

South 19,090 85,800 104,890 

West 11,676 55,427 67,103 

Column Totals 45,305 245,405 290,710 

Let’s Summarize 

The relationship between two categorical variables is summarized 
using 

• Data display: Two-way table, supplemented by 
• Numeric summaries: Conditional percentages. 

Conditional percentages are calculated separately for each value 
of the explanatory variable. When we try to understand the 
relationship between two categorical variables, we compare the 
distributions of the response variable for values of the explanatory 
variable. In particular, we look at how the pattern of conditional 
percentages differs between the values of the explanatory variable. 
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85. Two-Way Tables (2 of 5) 

 

Learning Objectives 

• Calculate marginal, joint, and conditional 
percentages and interpret them as probability 
estimates. 

In the previous section, we used the information in a two-table to 
examine the relationship between two categorical variables. Our 
goal was to answer the big question: Are the variables related? 

In this section, we continue to work with two-way tables, but we 
ask a different set of questions. 

Example 

Community College Enrollment 

The following table summarizes the full-time enrollment 
at a community college located in a West Coast city. There 
are a total of 12,000 full-time students enrolled at the 
college. The two categorical variables here are gender and 
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program. The programs include academic and vocational 
programs at the college. Assume that a student can enroll 
in only one program. 

Arts-
Sci 

Bus-Ec
on 

In
fo 
Tech 

Heal
th 
Science 

Graph
ics 
Design 

Culin
ary Arts 

Ro
w 
Totals 

Fema
le 4,660 435 49

4 421 105 83 6,19
8 

Male 4,334 490 56
4 223 97 94 5,8

02 

Colu
mn 
Totals 

8,994 925 1,
058 644 202 177 12,0

00 

Let’s consider a few preliminary questions to get familiar 
with this new data set. 

1. What proportion of the total number of students 
are male students? 

Answer: 

2. What proportion of the total number of students 
are Bus-Econ students? 

Answer: 

Note that to calculate this proportion, we used two 
numbers in the margin that relate to just one of the 
categorical variables (program). This calculation is therefore 
called a marginal proportion. 
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Note: This proportion does not help us determine if 
gender is related to program because it involves only one of 
the variables. 

Now consider the following question: 

If we choose one student at random from among all 
12,000 students at the college, how likely is it that this 
student will be in the Bus-Econ program? 

From our previous calculation, we know that only about 
8% (7.7%) of the students at the college are in the Bus-Econ 
program. That’s a fairly low number, so it is not very likely 
that our random student will be a Bus-Econ student. 

One way to state our conclusion is to say: 

There is about an 8% chance of picking a Bus-Econ 
major. 

This means that if we selected 100 students at random, 
we would expect on average that 8 of them would be in the 
Bus-Econ program. 

Here is another way to state this conclusion: 

There is about an 0.08 probability of picking a Bus-
Econ major. 

Because this probability is exactly the same as the 
marginal proportion we calculated earlier, we call it a 
marginal probability. 

Note: P for Probability 
It is customary to use the capital letter P to stand for probability. 

So instead of writing “The probability that a student is in Bus-Econ 
program equals 0.08,” we can write P(student is in Bus-Econ) = 0.08. 
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The following table is used for the next Learn By Doing and Did I 
Get This? activities. 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

R
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,80

Column 
Totals 8,994 925 1,058 644 202 177 12,

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=105 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=105 
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Example 

Conditional Probability 

Here is the same community college enrollment data. 

Arts-
Sci 

Bus-Ec
on 

In
fo 
Tech 

Heal
th 
Science 

Graph
ics 
Design 

Culin
ary Arts 

Ro
w 
Totals 

Fema
le 4,660 435 49

4 421 105 83 6,19
8 

Male 4,334 490 56
4 223 97 94 5,8

02 

Colu
mn 
Totals 

8,994 925 1,
058 644 202 177 12,0

00 

Here is our first question: 

If we select a female student at random, what is the 
probability that she is in the Health Sciences program? 

Answer: Of the 6,198 female students at the college, 421 
are enrolled in Health Sciences. (Find these numbers in the 
table.) The probability we are looking for is: 

Therefore, the probability that a female student is in the 
Health Sciences program is approximately 0.07. 

Focus on Language 
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We need to pause here and be very careful about the 
language we use in describing this situation. 

Note that we start with a female student and then ask 
what is the probability that this female student is in the 
Health Sciences department. 

In this case, our starting point is that the student is a 
female. This information sets the conditions for calculating 
the probability. Once the condition (student is female) is set, 
we focus on the female student population. In terms of the 
two-way table, it means that the only numbers we will be 
using are in the Female row: 421 and 6,198. 

What Is a Conditional Probability? 

The probability we calculated earlier is an example of a 
conditional probability. In general, a conditional 
probability is one that is based on a given condition. Here 
the given condition is that the student is female. 

Here is the notation we use for a conditional probability: 

• Original question: If we select a female student at 
random, what is the probability that she is in the 
Health Sciences program? 

• Notation: P(student is in Health Sciences given that
student is female). 

• We also write this as P(Health Sciences given
female). 

An even shorter way of writing this is to use a vertical bar 
| in place of given: P(Health Sciences | female). 

The following table is used for the next Learn By Doing and Did I Get 
This? activities. 
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Arts-Sci Bus-Econ Info Tech Health Science Gr

Female 4,660 435 494 421 105 

Male 4,334 490 564 223 97 

Column Totals 8,994 925 1,058 644 20

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=105 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=105 
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86. Two-Way Tables (3 of 5) 

 

Learning Objectives 

• Calculate marginal, joint, and conditional 
percentages and interpret them as probability 
estimates. 

At this point, we know how to determine marginal probabilities, 
such as the probability that a randomly selected student is female: 
P(female). 

And we know how to calculate conditional probabilities, such as 
the probability that a randomly selected female student is in the 
Health Science program: P(Health Science | female) 

But we do not know how to calculate joint probabilities, such as 
the probability that a randomly selected student is both a female 
and in the Health Sciences program. 

We write this joint probability as P(female and Health Sciences). 
The following example illustrates how to calculate a joint 

probability. 
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Example 

Joint Probability 

Question: If we select a student at random, what is the 
probability that the student is both a male and in the Info 
Tech program? 

Answer: This question involves male students who are in 
the Info Tech program, but it is NOT a conditional 
probability. We are picking a student at random from the 
entire population of 12,000 students, so there is no 
condition. Our shorthand notation for this probability is: 

P(male and Info Tech) 

Since 564 of the 12,000 students enrolled at the college 
are both male and in the Info Tech program (see table), the 
probability P(male and Info Tech) is: 
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Arts-
Sci 

Bus-Ec
on 

In
fo 
Tech 

Heal
th 
Science 

Graph
ics 
Design 

Culin
ary Arts 

Ro
w 
Totals 

Fema
le 4,660 435 49

4 421 105 83 6,19
8 

Male 4,334 490 56
4 223 97 94 5,8

02 

Colu
mn 
Totals 

8,994 925 1,
058 644 202 177 12,0

00 

We call this calculation a joint probability. Note that 
when we calculate a joint probability, we divide the count 
from an inner cell of the table by the overall total count in 
the lower right corner. 

The following table is used for the next Learn By Doing and Did I Get 
This? activities. 

Arts-Sci Bus-Econ Info 
Tech 

Health 
Science 

Graphics 
Design 

Culinary 
Arts 

Row 
Totals 

Female 4,660 435 494 421 105 83 6,198 

Male 4,334 490 564 223 97 94 5,802 

Column 
Totals 8,994 925 1,058 644 202 177 12,000 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=106 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=106 
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87. Two-Way Tables (4 of 5) 

 

Learning Objectives 

• Analyze and compare risks using conditional 
probabilities. 

When we calculate the probability of a negative outcome like a 
heart attack, we often refer to the probability as a risk. For example, 
we talk about the probability of winning the lottery but the risk of 
getting struck by lightning. Whenever you see the word risk, keep in 
mind it’s just another word for probability. 

Example 

Risk and the Physicians’ Health Study 

Researchers in the Physicians’ Health Study (1989) 
designed a randomized clinical trial to determine whether 
aspirin reduces the risk of heart attack. Researchers 
randomly assigned a large sample of healthy male 
physicians (22,071) to one of two groups. One group took a 
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low dose of aspirin (325 mg every other day). The other 
group took a placebo. This was a double-blind experiment. 
Here are the final results. 

Heart 
Attack 

No Heart 
Attack 

Row 
Totals 

Aspirin 139 10,898 11,037 

Placebo 239 10,795 11,034 

Column 
Totals 378 21,693 22,071 

Note that the categorical variables in this case are 

• Explanatory variable: Treatment (aspirin or placebo) 
• Response variable: Medical outcome (heart attack or 

no heart attack) 

Question: Does aspirin lower the risk of having a heart 
attack? 

To answer this question, we compare two conditional 
probabilities: 

• The probability of a heart attack given that aspirin 
was taken every other day. 

• The probability of a heart attack given that a 
placebo was taken every other day. 

From the table we have 

• P(heart attack | aspirin) = 139 / 11,037 = 0.013 
• P(heart attack | placebo) = 239 / 11,034 = 0.022 

The result shows that taking aspirin reduced the risk 
from 0.022 to 0.013. 

We often compare two risks by calculating the 
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percentage change. We calculate the difference (how much 
the risk changed) and divide by the risk for the placebo 
group. 

Here is the calculation: 

Therefore, we conclude that taking aspirin results in a 
41% reduction in risk. 

As reported in the New England Journal of Medicine, “This 
trial of aspirin for the primary prevention of cardiovascular 
disease demonstrates a conclusive reduction in the risk of 
myocardial infarction (heart attack).” (SOURCE: “FINAL 
REPORT ON THE ASPIRIN COMPONENT OF THE ONGOING 
PHYSICIANS’ HEALTH STUDY,” NEW ENGLAND JOURNAL OF 

MEDICINE 321(3):129–35, 1989.) 

Comment 
In the preceding example, we compared the difference in risk 

(how much the risk changed) to the risk for the placebo 
(nontreatment) group: 

In general, we are interested in determining how much a new 
treatment reduces the risk compared to a reference risk. The 
reference may be nontreatment (e.g., use of a placebo), or it could 
be an existing treatment that we hope to improve on. So we have: 

The following table is used for the next Learn By Doing activity. 
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Nonfatal Fatal Row Totals 

Seat Belt 412,368 510 412,878 

No Seat Belt 162,527 1,601 164,128 

Column Totals 574,895 2,111 577,006 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=107 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=107 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=107 

Let’s summarize our work with probability. We defined three kinds 
of probabilities related to a two-way table. 

• A marginal probability is the probability of a categorical 
variable taking on a particular value without regard to the other 
categorical variable. For example, P(Health Sciences) is the 
probability that a student is enrolled in the Health Sciences 
program. In calculating the probability, we use overall student 
data contained in the margins of the table. We do not take into 
account the other categorical variable: gender. 

• A conditional probability is the probability of a categorical 
variable taking on a particular value given the condition that the 
other categorical variable has some particular value. For 
example, P(Health Sciences given female) is the probability that 
a student is enrolled in Health Sciences given that we know the 
student is female. In calculating the probability, we use only a 
subset of the data. The subset used is determined by the given 
condition: if our condition relates to female students, then we 
consider only the information in the table pertaining to 
females. 

• A joint probability is the probability that the two categorical 
variables each take on a specific value. For example: P(male and 

Two-Way Tables (4 of 5)  |  437

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=107#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=107#pb-interactive-content


Info Tech) is the probability that a student is both a male and in 
the Info Tech program. In calculating this probability, we divide 
the count in one inner cell of the table by the overall total 
count (in the lower right corner). 

When we calculate the probability of a negative outcome like a heart 
attack, we often refer to the probability as a risk. We compare risk 
by calculating the percentage change: 
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88. Two-Way Tables (5 of 5) 

 

Learning Objectives 

• Create a hypothetical two-way table to answer 
more complex probability questions. 

In our previous work with probability, we computed probabilities 
using a two-way table of data from a large sample. Now we create 
a hypothetical two-way table to answer more complex probability 
questions. 

Example 

Will It Be a Boy or a Girl? 

A pregnant woman often opts to have an ultrasound to 
predict the gender of her baby. 

Assume the following facts are known: 

• Fact 1: 48% of the babies born are female. 
• Fact 2: The proportion of girls correctly identified is 
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9 out of 10. 
• Fact 3: The proportion of boys correctly identified 

is 3 out of 4. 

(SOURCE: KEELER, CAROLYN, AND STEINHORST, KIRK. “NEW 
APPROACHES TO LEARNING PROBABILITY IN THE FIRST 
STATISTICS COURSE,” JOURNAL OF STATISTICS EDUCATION 

9(3):1–24, 2001.) 

Here are the questions we want to answer: 

Question 1: If the examination predicts a girl, how 
likely is it that the baby will be a girl? 

Question 2: If the examination predicts a boy, how 
likely is it that the baby will be a boy? 

Let’s consider what the possibilities are. 

• The ultrasound examination predicts a girl, and 
either (a) a girl is born or (b) a boy is born. 

• The ultrasound exam predicts a boy, and either (a) a 
girl is born or (b) a boy is born. 

Let’s represent these four possible outcomes in a two-
way table. On the left we have the categorical variable 
prediction, and on the top the categorical variable gender of 
baby. 

Girl Boy 

Predict Girl 

Predict Boy 

Now we find ourselves in an interesting situation. A two-
way table without data! 
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The key idea is to create a two-way table consistent with 
the stated facts, then use the table to answer our questions. 

To get started, let’s assume we have ultrasound 
predictions for 1,000 random babies. We could have picked 
any number here, but 1,000 will make our calculations 
easier to keep track of. 

Starting with this number, we work backwards with our 
three facts to fill in this “hypothetical” table. 

The first step is to put 1,000 as the overall total in the 
bottom right corner. 

Girl Boy Row Totals 

Predict Girl 

Predict Boy 

Column Totals 1,000 

Let’s consider Fact 1: 48% of the babies born are female. 

The bottom row gives the distribution of the categorical 
variable gender of baby. We can use this fact to compute the 
total number of girls and boys. 

• 48% girls means that 0.48 (1,000) = 480 are girls. 
• 52% are boys. (If 48% are girls, then 100% − 48% = 

52% are boys.) So, 0.52(1,000) = 520 boys. 

Fill these values into the bottom row of table. 

• Note: These are marginal totals. 
• You can check your work: These numbers should 

add to 1,000. If we add all the girls and boys together, 
we get the total number of babies. 
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Girl Boy Row 
Totals 

Predict Girl 

Predict Boy 

Column 
Totals 

0.48(1,000) = 
480 

0.52(1,000) = 
520 1,000 

Now let’s move on to Fact 2: The proportion of girls 
correctly identified is 9 out of 10. 

• 9 out of 10 is 90% (9 ÷ 10 = 0.90 = 90%). 
• 90% of the girls are correctly identified: 0.90(480) = 

432. 
• 10% of the girls are misidentified (predicted to be a 

boy): 0.10(480) = 48. 

Fill these values into the table. 

• You can check your work: These numbers should 
add to the total number of girls. 

• (Girls who are correctly identified as girls ) + (Girls 
who are misidentified as boys) = Total girls 

Girl Boy Row Totals 

Predict Girl 0.90(480)= 432 

Predict Boy 0.10(480) = 48 

Column Totals 480 520 1,000 

Finally, we use Fact 3: The proportion of boys correctly 
identified is 3 out of 4. 

• 3 out of 4 is 75% (3 ÷ 4 = 0.75 = 75%). 
• 75% of the boys are correctly identified: 0.75(520) = 
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390. 
• 25% of the boys are misidentified (predicted to be a 

girl): 0.25(520) = 130. 

Fill these values into the table. 

• You can check your work: These numbers should 
add to the total number of boys. 

• (Boys who are correctly identified as boys ) + (Boys 
who are misidentified as girls) = Total boys 

Girl Boy Row Totals 

Predict Girl 432 0.25(520) = 130 

Predict Boy 48 0.75(520) = 390 

Column Totals 480 520 1,000 

Filling in the Row Totals, we now have a complete 
hypothetical two-way table based on our given information. 

Girl Boy Row Totals 

Predict Girl 432 130 562 

Predict Boy 48 390 438 

Column Totals 480 520 1,000 

We are now in a position to answer our two questions: 

Question 1: If the examination predicts a girl, how likely is 
it that the baby will be a girl? 

Answer: We are asked to find the probability of a girl 
given that the examination predicts a girl. 

This is the conditional probability: P(girl | predict girl). 
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So our answer to Question 1 is P(girl | predict girl) = 432 / 
562 = 0.769. 

Question 2: If the examination predicts a boy, how likely is 
it that the baby will be a boy? 

Answer: We are asked to find the probability of a boy 
given that the examination predicts a boy. 

This is the conditional probability: P(boy | predict boy). 

So our answer to Question 2 is P(boy | predict boy) = 390 
/ 438 = 0.890. 

Conclusion: If an ultrasound examination predicts a girl, 
the prediction is correct about 77% of the time. In contrast, 
when the prediction is a boy, it is correct 89% of the time. 

Comment 
Are you surprised at the answers to these questions? Looking 

just at the three given facts, you might have intuitively expected a 
different result. This is exactly why a two-way table is so useful. 
It helps us organize the relevant information in a way that permits 
us to carry out a logical analysis. When it comes to probability, 
sometimes our intuition needs some help. 

Use the following context for the next Learn By Doing activity. 
A large company has instituted a mandatory employee drug 

screening program. Assume that the drug test used is known to 
be 99% accurate. That is, if an employee is a drug user, the test 
will come back positive (“drug detected”) 99% of the time. If an 
employee is a non-drug user, then the test will come back negative 
(“no drug detected”) 99% of the time. Assume that 2% of the 
employees of the company are drug users. 

In constructing the hypothetical two-way table, it is convenient 
to start by assuming that the company has 10,000 employees 
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(10,000 is a large enough number to ensure that all calculations 
result in whole numbers). 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=108 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=108 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

Two-Way Tables (5 of 5)  |  445

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content


https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=108 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=108 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=108 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

446  |  Two-Way Tables (5 of 5)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content


https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=108 

 

Two-Way Tables (5 of 5)  |  447

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=108#pb-interactive-content


89. Putting It Together: 
Relationships in Categorical 
Data with Intro to 
Probability 

 

Let’s Summarize 

To summarize the relationship between two categorical variables, 
use: 

• A data display: A two-way table 
• Numerical summaries: Conditional percentages 

When we investigate the relationship between two categorical 
variables, we use the values of the explanatory variable to define 
the comparison groups. We then compare the distributions of the 
response variable for values of the explanatory variable. In 
particular, we look at how the pattern of conditional percentages 
differs between the values of the explanatory variable. 

For example, we investigated the relationship between body 
image and gender. We compared males to females. For each 
gender, we determined the percentage who felt their body 
weight was about right, overweight, or underweight. P(body 
image “about right” | male) is compared to P(body image “about 
right” | female). 
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Keys Ideas from Our Work with Probability 
We defined three kinds of probabilities related to a two-way table: 

• A marginal probability is the probability of a categorical 
variable taking on a particular value without regard to the other 
categorical variable. For example, P(Health Sciences) is the 
probability that a student is enrolled in the Health Sciences 
program. In calculating the probability, we use overall student 
data contained in the margins of the table. A marginal 
probability is a row or column total divided by the table total. 

• A conditional probability is the probability of a categorical 
variable taking on a particular value given the condition that the 
other categorical variable has some particular value. For 
example, P(Health Sciences given female) means we look first 
at all females, then identify the female students who are Health 
Science students. In calculating the probability, we use only a 
subset of the data. The condition determines the subset of data 
we use. If our condition relates to female students, then we 
consider only the information in the table pertaining to 
females. 

• A joint probability is the probability that the two categorical 
variables each take on a specific value. For example: P(male and
Info Tech) is the probability that a student is both a male and in 
the Info Tech program. In calculating this probability, we divide 
the count from one inner cell of the table by the overall total 
count (in the lower right corner.) 

When we calculate the probability of a negative outcome, we often 
refer to the probability as a risk. We compare risk by calculating 
the percentage change (divide difference in risks by risk in placebo 
group). 

Finally, we created hypothetical two-way tables to compute 
complex probabilities, such as the probability of a positive drug test 
for someone who does not use drugs. 
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90. StatTutor: Treating 
Depression: A Randomized 
Clinical Trial 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=110 
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PART VI 

CHAPTER 6: PROBABILITY 
AND PROBABILITY 
DISTRIBUTIONS 
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91. Why It Matters: 
Probability and Probability 
Distributions 

 
Recall the Big Picture—the four-step process that encompasses 

statistics (as it is presented in this course): 

So far, we’ve discussed the first two steps: 
Producing data—how data are obtained and what considerations 

affect the data production process. 
Exploratory data analysis—tools that help us get a first feel for 

the data by exposing their features using graphs and numbers. 
Our eventual goal is inference—drawing reliable conclusions 

about the population on the basis of what we’ve discovered in our 
sample. To really understand how inference works, though, we first 
need to talk about probability, because it is the underlying 
foundation for the methods of statistical inference. We use an 
example to try to explain why probability is so essential to 
inference. 

First, here is the general idea: As we all know, the way statistics 
works is that we use a sample to learn about the population from 
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which it was drawn. Ideally, the sample should be random so that it 
represents the population well. 

Recall from Types of Statistical Studies and Producing Data that 
when we say a random sample represents the population well, we 
mean that there is no inherent bias in this sampling technique. 
It is important to acknowledge, though, that this does not mean 
all random samples are necessarily “perfect.” Random samples are 
still random, and therefore no random sample will be exactly the 
same as another. One random sample may give a fairly accurate 
representation of the population, whereas another random sample 
might be “off” purely because of chance. Unfortunately, when 
looking at a particular sample (which is what happens in practice), 
we never know how much it differs from the population. This 
uncertainty is where probability comes into the picture. We use 
probability to quantify how much we expect random samples to 
vary. This gives us a way to draw conclusions about the population 
in the face of the uncertainty that is generated by the use of a 
random sample. The following example illustrates this important 
point. 

Example 

Death Penalty 

Suppose we are interested in estimating the percentage 
of U.S. adults who favor the death penalty. To do so, we 
choose a random sample of 1,200 U.S. adults and ask their 
opinion: either in favor of or against the death penalty. We 
find that 744 of the 1,200, or 62%, are in favor. (Although 
this is only an example, 62% is quite realistic given some 
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recent polls). Here is a picture that illustrates what we have 
done and found in our example: 

Our goal is to do inference—to learn and draw 
conclusions about the opinions of the entire population of 
U.S. adults regarding the death penalty on the basis of the 
opinions of only 1,200 of them. 

Can we conclude that 62% of the population favors the 
death penalty? Another random sample could give a very 
different result, so we are uncertain. But because our 
sample is random, we know that our uncertainty is due to 
chance, not to problems with how the sample was 
collected. So we can use probability to describe the 
likelihood that our sample is within a desired level of 
accuracy. For example, probability can answer the question, 
How likely is it that our sample estimate is no more than 3% 
from the true percentage of all U.S. adults who are in favor of 
the death penalty? 

Answering this question (which we do using probability) 
is obviously going to have an important impact on the 
confidence we can attach to the inference step. In 

Why It Matters: Probability and Probability Distributions  |  457



particular, if we find it quite unlikely that the sample 
percentage will be very different from the population 
percentage, then we have a lot of confidence that we can 
draw conclusions about the population on the basis of the 
sample. 

In this module, we discuss probability more generally. 
Then we begin to develop the probability machinery that 
underlies inference. 
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92. Introduction: Another 
Look at Probability 

What you’ll learn to do: Interpret (in context) a 
probability as a long-run relative frequency of an 
event. 

LEARNING OBJECTIVES 

• Interpret (in context) a probability as a long-run 
relative frequency of an event. 
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93. Another Look at 
Probability (1 of 2) 

 

Learning Objectives 

• Interpret (in context) a probability as a long-run 
relative frequency of an event. 

In the module Relationships in Categorical Data with Intro to 
Probability, we used the word probability to mean “likelihood” or 
“chance.” We used data to make statements about 

• the likelihood that a randomly selected student from a specific 
college is a Health Science major. 

• the risk associated with not wearing a seat belt. 
• the chance of a positive drug test for someone who does not 

use drugs when the test is 94% accurate. 

For each of these probability statements, we used a notation P(A) 
where A is the description of an event. We used the following 
notation to represent probability statements like the preceding 
ones: 

• P(Health Science) 
• P(fatal accident given that the person was not wearing a 

seatbelt) = P(fatal accident | not wearing a seatbelt) 
• P(a person is not a drug user given that the person had a 
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positive test result) = P(not a drug user | positive test result) 

In each case, the probability was a number between 0 and 1. What 
does this number tell us about the likelihood of an event occurring? 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=114 

In summary, the probability that an event will occur is a number 
between (and including) 0 and 1. We write this idea in mathematical 
notation as 0 ≤ P(A) ≤ 1. 
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Example 

A Closer Look at How We Calculate 
Probabilities 

You may have had some experience with probability 
using coins, cards, and dice. 

What is the probability that when you flip a coin you 
get heads? 

What is the probability that when you roll the dice 
you get doubles? 

We can answer these types of probability questions 
without collecting data. In situations where the outcomes 
are equally likely, we can use mathematics to calculate the 
probability instead of collecting data. For example, what is 
the probability of getting heads when you toss a coin? 
There are two equally likely outcomes: heads or tails. So 

. This is the theoretical probability of 

getting a head when you toss a coin. We determine the 
number of ways an event can occur and divide by the total 
number of possible outcomes. No experiments or data 
collection is necessary. 

What is the probability that a community college student 
is female? Like tossing a coin, this event also has two 

outcomes: female or male. But is  ? To 
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estimate this probability, we have to collect data. We can 
use the data from the West Coast college that we saw in 
Relationships in Categorical Data with Intro to Probability 
and estimate that 

 . Of course, 

this estimate assumes this college is a representative 
sample of community colleges. Data from 2010 enrollments 
at Los Medanos College in California give a different 

estimate:  . Neither 

estimate is equal to 0.5 because there appear to be more 
women than men attending community college. These are 
examples of empirical probabilities. 

Empirical probability of an event is an estimate, using 
data, of the likelihood that the event will happen. We can 
view the probabilities we calculated in Relationships in 
Categorical Data with Intro to Probability as empirical 
probabilities. 
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94. Another Look at 
Probability (2 of 2) 

 

Learning Objectives 

• Interpret (in context) a probability as a long-run 
relative frequency of an event. 

What Is the Relationship between Theoretical 
and Empirical Probability? 

We investigate this question in the following two activities. We 
use coin flipping as a first step in understanding the connection 
between these two ways of determining the probability of an event. 

A single flip of a coin has an uncertain outcome. We do not know 
if we will get heads or tails. If we flip the coin 10 times, we are 
not guaranteed to get 5 heads and 5 tails. So what exactly does it 
mean when we say P(heads) = 0.5? To answer this question, we use 
a simulation to simulate flipping a coin. 

Our goal is to understand how the empirical probability P(head) 
relates to the theoretical probability of 0.5. 
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Activity 1: Fair Coin 

The purpose of this activity is to experiment with a simulation that 
simulates flipping a fair coin, and to see if the P(H) = 0.5. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 

 

Source: GeoGebra, license: CC BY SA 
Note that by clicking the GeoGebra link above you can launch a 

new window with this simulation in it if you would like to position it 
closer to the questions you’ll be answering below to avoid scrolling 
so much. 

Part (1) 

1. Make sure Coins = 1 and P(heads) = 0.5. 
2. Press the “1 Flip” button 3 times. 
3. Notice that for each flip, you will see either heads (1) or tails (0) 

appear in the histogram count. 

Part (2) 

1. Press the Reset button so that the count is cleared. 
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2. Make sure Coins = 1 and P(heads) = 0.5. 
3. This time press the “10 Flips” button 3 times so that you have 

30 coin flips. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 

Part (3) 

1. Press the Reset button so that the count is cleared. 
2. Make sure Coins = 1 and P(heads) = 0.5. 
3. Press the Auto button and watch the count of heads and tails 

change. 
4. Click the Pause (II) button once Total Flips is over 1,000. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 
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In the preceding activity, the simulation simulates flipping a fair 
coin. P(heads) = 0.5 with a fair coin. How can we tell if a coin is not 
fair? Theoretical probability methods cannot answer this question. 
The only way we can answer this question is to collect data as we 
flip the coin. 

Activity 2: Unfair Coin 

The purpose of this activity is to experiment with an activity that 
simulates flipping an unfair coin. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 

 

Source: GeoGebra, license: CC BY SA 
Note that by clicking the GeoGebra link above you can launch a 

new window with this simulation in it if you would like to position it 
closer to the questions you’ll be answering below to avoid scrolling 
so much. 

1. Make sure Coins = 1 and P(heads) = 0.2. 
2. Click the Auto button and watch the count of heads and tails 

change. 
3. Click the Pause (II) button once Total Flips is over 100 or so. 
4. Record the total number of Heads (1’s) and the total number of 
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flips. 
5. Calculate P(H) (Number of heads / Total Flips) when Total Flips 

is about 100. 
6. Click the Auto button again to continue the flips. 
7. Click the Pause (II) once Total Flips is over 1,000 or so. 
8. Record the total number of Heads (1’s) and the total number of 

flips. 
9. Calculate P(H) (Number of heads / Total Flips) when Total Flips 

is about 1,000. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=115 

Let’s summarize what we have learned from these activities: 

• The empirical probability will approach the theoretical 
probability after a large number of repetitions. In some 
situations, such as in flipping an unfair coin, we cannot 
calculate the theoretical probability. In these cases, we have to 
depend on data. 

• There is less variability in a large number of repetitions. This 
means that in the long run, we will see a pattern, so we are 
more confident about estimating the probability of an event 
using empirical probability with a large number of repetitions. 
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What Do We Mean When We Say an Event Is 
Random or Due to Chance? 

In the discussion of the role of probability in the Big Picture of 
Statistics, we said that probability is the machinery that allows us 
to draw conclusions about a population on the basis of a random 
sample. To understand why we can trust random selection in an 
observational study and random assignment in an experiment, we 
need to look more closely at what we mean by random or chance 
behavior. 

When we say that an event is random or due to chance, we mean 
that the event is unpredictable in the short run but has a regular and 
predictable behavior in the long run. This is obviously true for the 
coin-tossing activity. We cannot predict whether an individual toss 
will be heads, but in the long run, the outcomes have a predictable 
pattern. The relative frequency of heads is very close to 0.5 for a fair 
coin. 

We can make probability statements only about random events. 

What Is the Connection between the 
Coin-Flipping Activities and the Discussion of 
Probability in the Previous Module? 

Let’s look at two probability questions that we might answer using 
the familiar data set from Relationships in Categorical Data with 
Intro to Probability. Recall that 6,198 of the 12,000 students at a 
West Coast community college are female. Previously, we calculated 
P(female) = 6,198 / 12,000 = 0.5165. What is the random event in 
this case? Let’s be very specific about the question this calculation 
is meant to answer. 

What is the probability that a student at the West Coast community 
college is a female? 
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• In this case, the relative frequency 6,198 / 12,000 is the actual 
proportion of females at the college. This is like the fair coin 
situation. Because we know the gender distribution at the 
college, we can think of 0.5165 as the theoretical probability 
that a randomly selected student at this particular college is a 
female. Tossing the fair coin in the simulation is like randomly 
selecting a student from the spreadsheet of data. We do not 
know if a randomly selected student will be female. But if we 
repeat this process many, many times, in the long run, the 
relative frequency of females will have a predictable pattern. 
The relative frequency will be very close to the proportion of 
females in the data set. 

What is the probability that a community college student in the 
United States is female? 

• In this case, we are using the data from the 12,000 West Coast 
community college students to represent students at all 
community colleges in the United States. The relative 
frequency is an estimate for the chance that a randomly 
selected U.S. student is female. This is like tossing the unfair 
coin 12,000 times and using the relative frequency of heads as 
an estimate of P(head). We do not know P(female) for all 
community colleges, just as we did not know the P(heads) with 
an unfair coin. But if the sample is random, we can use the 
relative frequency of females in the sample as an estimate of 
P(female) in all community colleges. 

The main points are these: 

• We can make probability statements only about random 
events. 

• Probability of an event A is the relative frequency with which 
that event occurs in a long series of repetitions. 
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95. Introduction: Probability 
Rules 

What you’ll learn to do: Reason from probability 
distributions, using probability rules, to answer 
probability questions. 

LEARNING OBJECTIVES 

• Reason from probability distributions, using 
probability rules, to answer probability questions. 

• Use conditional probability to identify independent 
events. 
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96. Probability Rules (1 of 3) 

 

Learning Objectives 

• Interpret (in context) a probability as a long-run 
relative frequency of an event. 

In our previous discussions of probability, we focused on 
determining the probability of one event at a time. For example, we 
used two-way tables in Relationships in Categorical Data with Intro 
to Probability to find the probability that a randomly selected female 
student from a community college is a Health Science major. 

Now we shift our focus to describing the probabilities of all 
possible outcomes instead of the probability of just one outcome. 

We think of all possible outcomes as variable values. Each variable 
value has a probability. The variable values together with their 
probabilities are a probability distribution. 
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Example 

Probability Distribution for Blood Type 

Consider the variable blood type. This is a categorical 
variable with variable values A, B, AB, or O. Using relative 
frequencies from large samples of randomly chosen 
individuals, we can estimate the probability of choosing a 
person with a given blood type. Using relative frequencies, 
the Stanford University’s Blood Center 
(bloodcenter.stanford.edu) gives the probabilities of human 
blood types in the United States as follows: 

Blood Type O A B AB 

Probability 0.45 0.41 0.10 0.04 

This table is an example of a probability distribution. 
Each variable value is assigned a probability. 

Notice the following important fact about this probability 
distribution: 

The sum of all of the probabilities is 1. This makes sense 
because we have listed all the outcomes. Since each 
probability is a relative frequency, these outcomes make up 
100% of the observations. 

We can use the probability distribution to answer 
probability questions: 

Question: People with blood type O can donate 
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blood to people with any other blood type. For this 
reason, people with blood type O are called universal 
donors. What is the probability that a randomly 
selected person from the United States is a universal 
donor? 

Answer: P(universal donor) = P(blood type O) = 0.45. 
There is a 45% chance that a randomly selected 
person in the United States is a universal donor. 

Example 

Probability Distribution for Boreal Owl 
Eggs 

Boreal owls are common in Canada and Alaska. They are 
fairly small, averaging 10 inches in length and weighing 
from 4 to 6 oz. They often make their nests in woodpecker 
holes. The number of eggs in a boreal owl nest generally 
ranges from 4 to 6 eggs. Using relative frequencies from 
large field observations, we can estimate the probability of 
a nest containing a certain number of eggs. 

The variable is Boreal owl eggs in a nest. This is a 
quantitative variable with values 0, 1, 2, 3, 4, 5, or 6 eggs. 
The probability distribution gives the probability that a nest 
will have from 0 to 6 eggs. 
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Number of 
Eggs 0 1 2 3 4 5 6 

Probability 0.
2 

0
.1 

0
.1 

0.2
5 

0.2
5 

0.0
5 

0.0
5 

 

This table is also an example of a probability distribution. 
Each variable value is assigned a probability. 

Note: The sum of all of the probabilities is 1. This is always 
true for a probability distribution. 

We can use the probability distribution to answer 
probability questions: 

Question: Which is more likely: (1) To find a boreal 
owl nest with 3 eggs, or (2) To find a boreal owl nest 
with 4 eggs. 

Answer: Both of these events are equally likely. 
P(3 eggs) = P(4 eggs) = 0.25. There is a 25% chance 
that if you find a boreal owl nest, it will have 3 eggs. 
You are equally likely to find a boreal owl nest with 4 
eggs. 

Notice the following important facts about probability distributions: 
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• The outcomes are random events. When we randomly choose a 
person, we do not know their blood type. But there is a 
predictable pattern in the outcomes that is described by the 
relative frequencies. When we randomly select a boreal owl 
nest, we do not know how many eggs it will contain, but there 
is a predictable pattern in the outcomes that is described by 
the relative frequencies. 

• All outcomes are assigned a probability. 
• The probabilities are numbers between 0 and 1. This makes 

sense because each probability is a relative frequency. 
• The sum of all of the probabilities is 1. This makes sense because 

we have listed all the outcomes. Since each probability is a 
relative frequency, these outcomes make up 100% of the 
observations. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=117 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=117 
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97. Probability Rules (2 of 3) 

 

Learning Objectives 

• Reason from probability distributions, using 
probability rules, to answer probability questions. 

Here we continue to use probability distributions to answer 
probability questions. We look for some patterns that suggest 
general rules for determining probabilities. 

Example 

When Can We Add Probabilities? 

Compare these two questions. What do the solutions 
have in common? 

Question 1: A person with blood type A can receive 
blood from individuals with type A or O blood. What 
is the probability that a randomly selected person from 
the United States can donate blood to someone with 
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type A blood? 

Blood Type O A B AB 

Probability 0.45 0.41 0.10 0.04 

Answer: P(donate to A) = P(blood type A or blood 
type O) = 0.45 + 0.41 = 0.86. There is an 86% chance 
that a randomly selected person in the United States 
can donate blood to someone with type A blood. 

Question 2: What is the probability that a randomly 
chosen boreal owl nest will either be empty or contain 
only 1 egg? 

Number of 
Eggs 0 1 2 3 4 5 6 

Probability 0.
2 

0
.1 

0
.1 

0.2
5 

0.2
5 

0.0
5 

0.0
5 

Answer: P(no eggs or 1 egg) = P(no egg) + P(1 egg) = 
0.2 + 0.1 = 0.3. There is a 30% chance that a randomly 
selected boreal owl nest will be empty or contain only 
one egg. 

What do these solutions have in common? 

In each case, we have two events and we want to find the 
probability that either event A or event B occurs. In each 
case, we added the probabilities. This works because the 
events have no outcomes in common. When two events 
have no outcomes in common, they are disjoint. 

The events “type A blood” and “type O blood” are disjoint. 
These events cannot both happen at the same time for a 
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single person. A person cannot have both type A blood and 
type O blood. 

The events “no eggs” and “1 egg” are disjoint. These 
outcomes cannot both happen at the same time for a single 
nest. A nest cannot contain no eggs and at the same time 
contain 1 egg. 

If two events are disjoint, then we can add their 
individual probabilities. We write this fact as a rule: 

P(A or B) = P(A) + P(B) 

Comment 

We stated the addition rule as a formal rule. A rule is a concise way 
to summarize a general principle from specific examples. This is one 
advantage of a rule. One disadvantage of a rule is that sometimes it 
discourages us from just thinking through a problem. Students often 
have the experience that they misremember a rule or forget the 
conditions required for the rule to work. This leads to mistakes that 
we can avoid if we just think through the problem without worrying 
about rules. We encourage you to think through probability 
problems whenever possible without resorting to rules. If you use 
a rule, be careful to check that the situation meets the conditions 
required for using the rule. 

This addition rule for probabilities only works when the events 
are disjoint. If the events are not disjoint, the rule does not work. 
Here is an example of when the rule does not work because the 
events are not disjoint. 
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Example 

When Can We NOT Add Probabilities? 

Arts-
Sci 

Bus-Ec
on 

In
fo 
Tech 

Heal
th 
Science 

Graph
ics 
Design 

Culin
ary Arts 

Ro
w 
Totals 

Fema
le 4,660 435 49

4 421 105 83 6,19
8 

Male 4,334 490 56
4 223 97 94 5,8

02 

Colu
mn 
Totals 

8,994 925 1,
058 644 202 177 12,0

00 

Question: What is the probability that a randomly 
selected student is either a Health Science major or a 
female? 

Answer: There are 644 Health Science majors and 
6,198 females, but 421 students are counted twice 
because they are both Health Science majors and 
female. We must subtract these students before 
calculating the relative frequency: 

Now let’s calculate the individual probabilities and 
see if the rule works: 

Main point: P(Health Science or female) ≠ P(Health 
Science) + P(female). In other words, the addition rule 
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does not work here. Why not? The two events “Health 
Science” and “female” are not disjoint. The data set 
contains people who are both in the Health Science 
program and female. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=118 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=118 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=118 

Example 

Do We Ever Subtract Probabilities? 

Compare these two questions. What do the solutions 
have in common? 

Question 1: People with blood type O can donate 
blood to people with any other blood type. For this 
reason, people with blood type O are called universal 
donors. What is the probability that a randomly 
selected person from the United States is not a 
universal donor? 
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Blood Type O A B AB 

Probability 0.45 0.41 0.10 0.04 

Answer: P(NOT a universal donor) = P(blood type is 
not type O) = P(blood type A, B, or AB) = 0.41 + 0.10 + 
0.04 = 0.55. There is a 55% chance that a randomly 
selected person in the United States is not a universal 
donor. 

Here is another way we can solve this problem. We can 
use the idea that all of the probabilities together make up 
100% of the possibilities. If we add up all the probabilities in 
the table, we get 1. We can subtract the probability that 
someone is type O from 1 to find the probability that the 
person is not type O: 

P(NOT a universal donor) = P(blood type is not type 
O) = 1 – P(type O) = 1 – 0.45 = 0.55 

Question 2: What is the probability that a randomly 
selected boreal owl nest is not empty? 

Number of 
Eggs 0 1 2 3 4 5 6 

Probability 0.
2 

0
.1 

0
.1 

0.2
5 

0.2
5 

0.0
5 

0.0
5 

Answer: P(nest is not empty) = P(at least one egg) = 
P(1, 2, 3, 4, 5, or 6 eggs) = 0.1 + 0.1 + 0.25 + 0.25 + 0.05 + 
0.05 = 0.80. There is an 80% chance that the nest you 
observe has at least one egg. 

Here is another approach: 
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P(nest is not empty) = P(at least one egg) = 1 – P(0 
eggs) = 1 – 0.2 = 0.8. 

What do these solutions have in common? 

In each case, we have an event that can be interpreted as 
a “not” statement. The probability that a person is not a 
universal donor means the person is not type O. The 
probability that a boreal owl nest is empty means the nest 
does not contain 0 eggs. In each case, the easy way to 
compute the probability is to use the complement event. 
The complement of event A is the event composed of 
outcomes that are “not A.” In our examples, the 
complement of “type O blood” is the event composed of 
“blood types A, B, or AB.” The complement of “0 eggs” is the 
event composed of “1, 2, 3, 4, 5, or 6 eggs.” When two sets of 
events are complements, their probabilities add to 1. 

When one event is the complement of another, then we 
can use the complement rule: 

P(not A) = 1 – P(A) 

We can use this rule to find probabilities only when the 
two events are complements. Two events are complements 
when their probabilities add to 1. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=118 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=118 
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98. Probability Rules (3 of 3) 

 

Learning Objectives 

• Use conditional probability to identify independent 
events. 

Independence and Conditional Probability 
Recall that in the previous module, Relationships in Categorical 

Data with Intro to Probability, we introduced the idea of the 
conditional probability of an event. 

Here are some examples: 

• the probability that a randomly selected female college student 
is in the Health Science program: P(Health Science | female) 

• P(a person is not a drug user given that the person had a 
positive test result) = P(not a drug user | positive test result) 

Now we ask the question, How can we determine if two events are 
independent? 
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Example 

Identifying Independent Events 

Is enrollment in the Health Science program independent 
of whether a student is female? Or is there a relationship 
between these two events? 

Arts-
Sci 

Bus-Ec
on 

In
fo 
Tech 

Heal
th 
Science 

Graph
ics 
Design 

Culin
ary Arts 

Ro
w 
Totals 

Fema
le 4,660 435 49

4 421 105 83 6,19
8 

Male 4,334 490 56
4 223 97 94 5,8

02 

Colu
mn 
Totals 

8,994 925 1,
058 644 202 177 12,0

00 

To answer this question, we compare the probability that 
a randomly selected student is a Health Science major with 
the probability that a randomly selected female student is a 
Health Science major. If these two probabilities are the 
same (or very close), we say that the events are 
independent. In other words, independence means that 
being female does not affect the likelihood of enrollment in 
a Health Science program. 

To answer this question, we compare: 

• the unconditional probability: P(Health Sciences) 
• the conditional probability: P(Health 

Probability Rules (3 of 3)  |  491



Sciences | female) 

If these probabilities are equal (or at least close to equal), 
then we can conclude that enrollment in Health Sciences is 
independent of being a female. If the probabilities are 
substantially different, then we say the variables are 
dependent. 

Both conditional and unconditional probabilities are 
small; however, 0.068 is relatively large compared to 0.054. 
The ratio of the two numbers is 0.068 / 0.054 = 1.25. So the 
conditional probability is 25% larger than the unconditional 
probability. It is much more likely that a randomly selected 
female student is in the Health Science program than that a 
randomly selected student, without regard for gender, is in 
the Health Science program. There is a large enough 
difference to suggest a relationship between being female 
and being enrolled in the Health Science program, so these 
events are dependent. 

Comment: 

To determine if enrollment in the Health Science program is 
independent of whether a student is female, we can also compare 
the probability that a student is female with the probability that a 
Health Science student is female. 
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We see again that the probabilities are not equal. Equal 

probabilities will have a ratio of one. The ratio is 

, which is not close to one. It is much more likely that a randomly 
selected Health Science student is female than that a randomly 
selected student is female. This is another way to see that these 
events are dependent. 

To summarize: 
If P(A | B) =  P(A), then the two events A and B are independent.To 

say two events are independent means that the occurrence of one 
event makes it neither more nor less probable that the other occurs. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=119 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=119 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=119 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=119 

In Relationships in Categorical Data with Intro to Probability, we 
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explored marginal, conditional, and joint probabilities. We now 
develop a useful rule that relates marginal, conditional, and joint 
probabilities. 

Example 

A Rule That Relates Joint, Marginal, and 
Conditional Probabilities 

Let’s consider our body image two-way table. Here are 
three probabilities we calculated earlier: 

Marginal probability: 

Conditional probability: 

Joint probability: 

Note that these three probabilities only use three 
numbers from the table: 560, 855, and 1,200. (We grayed out 
the rest of the table so we can focus on these three 
numbers.) 
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Now observe what happens if we multiply the marginal 
and conditional probabilities from above. 

The result 560 / 1200 is exactly the value we found for 
the joint probability. 

When we write this relationship as an equation, we have 
an example of a general rule that relates joint, marginal, and 
conditional probabilities. 

In words, we could say: 

• The joint probability equals the product of the 
marginal and conditional probabilities 

This is a general relationship that is always true. In 
general, if A and B are two events, then 

P(A and B) = P (A) · P(B | A)This rule is always true. It has 
no conditions. It always works. 

When the events are independent, then P (B | A) = P(B). 
So our rule becomes 

P(A and B) = P(A) · P(B)This version of the rule only works 
when the events are independent. For this reason, some 
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people use this relationship to identify independent events. 
They reason this way: 

If P(A and B) = P (A) · P(B) is true, then the events are 
independent. 

Comment: 

Here we want to remind you that it is sometimes easier to think 
through probability problems without worrying about rules. This is 
particularly easy to do when you have a table of data. But if you use 
a rule, be careful that you check the conditions required for using 
the rule. 

Example 

Relating Marginal, Conditional, and Joint 
Probabilities 

What is the probability that a student is both a male and 
in the Info Tech program? 

There are two ways to figure this out: 

(1) Just use the table to find the joint probability: 
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(2) Or use the rule: 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=119 

All of the examples of independent events that we have encountered 
thus far have involved two-way tables. The next example illustrates 
how this concept can be used in another context. 

498  |  Probability Rules (3 of 3)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=119#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=119#pb-interactive-content


Example 

A Coin Experiment 

Consider the following simple experiment. You and a 
friend each take out a coin and flip it. What is the 
probability that both coins come up heads? 

Let’s start by listing what we know. There are two events, 
each with probability ½. 

P(your coin comes up heads) = ½ 
P(your friend’s coin comes up heads) = ½ 

We also know that these two events are independent, 
since the probability of getting heads on either coin is in no 
way affected by the result of the other coin toss. 

We are therefore justified in simply multiplying the 
individual probabilities: 

(½) (½) = ¼ 

Conclusion: There is a 1 in 4 chance that both coins will 
come up heads. 

If we extended this experiment to three friends, then we 
would have three independent events. Again we would 
multiply the individual probabilities: 

(½) (½) (½) = ⅛ 

Conclusion: There is a 1 in 8 chance that all three coins 
will come up heads. 
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99. Introduction: Discrete 
Probability Distribution 

What you’ll learn to do: Use probability 
distributions for discrete and continuous random 
variables to estimate probabilities and identify 
unusual events. 

LEARNING OBJECTIVES 

• Distinguish between discrete random variables and 
continuous random variables. 

• Use probability distributions for discrete and 
continuous random variables to estimate probabilities 
and identify unusual events. 

Introduction: Discrete Probability
Distribution  |  501



100. Discrete Random 
Variables (1 of 5) 

 

Learning Objectives 

• Distinguish between discrete random variables and 
continuous random variables. 

In our previous discussion of probability distributions, we did not 
distinguish between probability distributions for categorical and 
quantitative variables. Our focus was on developing the rules of 
probability. We looked at the probability distribution for the 
categorical variable blood type. We also looked at the probability 
distribution for the quantitative variable number of boreal owl eggs 
in a nest. The probability rules apply in both situations. 

Now we focus more closely on probability distributions for 
quantitative variables. These distributions will be very important 
when we study statistical inference. Examples of such variables are: 

• number of boreal owl eggs in a nest 
• number of times a college student changes major 
• shoe size 
• weight of a student 
• foot lengths for adults 

When the outcomes are quantitative, we call the variable a random 
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variable. In this section, we discuss the probability distributions of 
discrete random variables and random variables. 

Discrete random variables have numeric values that can be listed 
and often can be counted. For example, the variable number of 
boreal owl eggs in a nest is a discrete random variable. Shoe size is 
also a discrete random variable. Blood type is not a discrete random 
variable because it is categorical. 

Continuous random variables have numeric values that can be 
any number in an interval. For example, the (exact) weight of a 
person is a continuous random variable. Foot length is also a 
continuous random variable. Continuous random variables are often 
measurements, such as weight or length. We view measurements 
as continuous even though the limitations of a ruler or a scale give 
discrete measurements. For example, imagine weighing yourself on 
a digital scale that gives weights to the nearest tenth of a pound. You 
will get measurements that are rounded to the nearest tenth, such 
as 152.3 or 165.8. Actual weights could theoretically be any value in 
an interval, such as 152.345612555 or something like that. So with a 
discrete variable, you can count the possible values for the variable 
without rounding off. With a continuous variable, you cannot. 

Comment 

The word random here means that the outcomes are uncertain in 
the short run but have a regular distribution or predictable pattern 
in the long run. In statistics, we reserve the term random variable 
for quantitative variables. This can be a bit confusing because 
categorical variables can also describe random outcomes. 

Now we investigate the probability distributions for discrete 
random variables. 
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101. Discrete Random 
Variables (2 of 5) 

 

Learning Objectives 

• Use probability distributions for discrete and 
continuous random variables to estimate probabilities 
and identify unusual events. 

Probability Distribution for Discrete Random 
Variables 

In this section, we work with probability distributions for discrete 
random variables. Here is an example: 

Example 

Consider the random variable the number of times a 
student changes major. 

(For convenience, it is common practice to say: Let X be 
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the random variable number of changes in major, or X = 
number of changes in major, so that from this point we can 
simply refer to X, with the understanding of what it 
represents.) 

Here is the probability distribution of the random 
variable X: 

Here is what it tells us: 

For a randomly selected student, we cannot predict how 
many times he or she will change majors, but there is a 
predictable pattern described by the probability 
distribution (or model) above. So this is a random variable 
for which we are assuming the values range from 0 to 8. (In 
reality, a negligible proportion of students change majors 
more than 8 times.) The table provides a way to assign 
probabilities to outcomes. Note that if we add up the 
probabilities of all possible outcomes (0.135 + 0.271 + … + 
0.002), we get exactly 1, which is not surprising (because 
one of the possible outcomes 0, 1, … , 8 will occur for sure). 

Another way to represent the probability distribution of a 
random variable is with a probability histogram. 
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The horizontal axis accounts for the range of all possible 
values of the random variable (in our case, 0–8), and the 
vertical axis represents the probabilities of those values. 

The heights of the bars add to 1, which is not surprising 
since the heights represent probabilities. 

Let’s summarize the features of a probability distribution: 

• The outcomes described by the model are random. This means 
that individual outcomes are uncertain, but there is a regular, 
predictable distribution of outcomes in a large number of 
repetitions. 

• The model provides a way of assigning probabilities to all 
possible outcomes. 

• The probability of each possible outcome can be viewed as the 
relative frequency of the outcome in a large number of 
repetitions, so like any other probability, it can be any value 
between 0 and 1. 

• The sum of the probabilities of all possible outcomes must be 1. 

506  |  Discrete Random Variables (2 of 5)



Comment 

Where do these probability distributions come from? Recall that 
probability distributions can come from data, such as the 
distribution of boreal owl eggs. Scientists observe thousands of 
nests and record the number of eggs in each nest. Then they 
calculate the relative frequency of each outcome. The relative 
frequency of each outcome represents the empirical probability for 
that outcome. 

We can also use a mathematical formula to represent a probability 
distribution. In this case, we make assumptions about how 
outcomes will be distributed. In other words, we use a mathematical 
formula to describe the predicted relative frequencies for all 
possible outcomes. We do not look at mathematical formulas for 
probability distributions in this course, but we want you to be aware 
that not all probability distributions come from data. 

Example 

Recall the probability distribution of the random variable 
X = number of changes in major: 

Let’s see what kinds of probability questions we can 
answer using it. 

1. What is the probability that a college student will change 
majors at most once? 

The phrase “at most once” means either the student 
never changes majors (X = 0) or the student changes majors 
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once (X = 1). Therefore, to find this probability, we need to 
add the probabilities that are highlighted in the table: 

So, 

P(a college student changes majors at most once) = P(X = 
0) + P(X = 1) = 0.135 + 0.271 = 0.406 

The probability that a randomly selected college student 
will change majors at most once is about 0.406. We can also 
say that about 40.6% of the time, a randomly selected 
college student will change majors at most once. 

2. John’s parents are concerned that he has decided to 
change his major for the second time. John claims that he is 
not unusual. What is the probability that a randomly selected 
college student will change his major as often as or more 
often than John? 

To answer the question about John, we need know the 
probability that a randomly selected student will change his 
major 2 or more times. We need to add together the 
probabilities shaded in the table. 

P(change major 2 or more times) = P(X = 2) + P(X = 3) + … + 
P(X = 8) = 0.594 

Here is another way to figure this out. We can use the 
idea that all of the probabilities together make up 100% of 
the possibilities. So if we add up all the probabilities in the 
table we should get 1. Now if we figure out the probability 
that someone changes majors 0 or 1 times, we can just 
subtract this from 1 to find the probability that someone 
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changes majors 2 or more times. As we learned previously, 
this is the complement rule. 

P(change major 2 or more times) = 1 – [P(X = 0) + P(X = 1)] 
= 1 – [0.135 + 0.271] = 0.594 

Do you think John has given a convincing argument that 
he is not unusual? Yes! Fifty-nine percent of the time, a 
college student will change majors as often as or more 
often than John did. Stating this same result in terms of 
probability, we might say, “There is a 59% probability that a 
randomly selected college student will change majors 2 or 
more times while in college.” 

Learn By Doing 

An interactive or media element has 

been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=122 

Discrete Random Variables (2 of 5)  |  509

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=122#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=122#pb-interactive-content


Learn By Doing 

An interactive or media element has 

been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=122 

We found that changing a major 2 or more times is not 
very unusual, since it happens about 59% of the time. So… 

3. How often would John need to change his major to be 
considered unusual? 

One way to answer this question is to just a make a 
judgment call about what we might consider “unusual” 
based on the table. For example, we might notice that the 
probability that a student will change majors 5 or more 
times is about 5%. 

P(change majors 5 or more 
times) 

= P(X = 5) + P(X = 6) + P(X = 7) + 
P(X = 8) 

= 0.036 + 0.012 + 0.003 + 0.002 
= 0.053 
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An event that occurs only 5% of the time is pretty 
unusual. 

Are there other ways to more definitively determine what might 
be considered unusual? Well, we might use a measure of center, 
such as the mean, to determine a “typical” number of times that 
students change majors. Values that are 2 standard deviations above 
the mean could be used to identify unusual behavior. We will come 
back to this question after we have developed an understanding of 
mean and standard deviation for a probability distribution. 
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102. Discrete Random 
Variables (3 of 5) 

 

Learning Objectives 

• Use probability distributions for discrete and 
continuous random variables to estimate probabilities 
and identify unusual events. 

The Mean and Standard Deviation of a Discrete Random Variable 
We now focus on the mean and standard deviation of a discrete 

random variable. We discuss how to calculate these measures of 
center and spread for this type of probability distribution, but in 
general we will use technology to do these calculations. 

Example 

The Mean of a Discrete Random Variable 

At Rushmore Community College, there have been 
complaints about how long it takes to get food from the 
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college cafeteria. In response, a study was conducted to 
record the total amount of time students had to wait to get 
their food. The following table gives the total times 
(rounded to the nearest 5 minutes) to get food for 200 
randomly selected students. 

Here is the frequency table. 

Time (minutes) 5 10 15 20 25 

Number of students 30 52 62 40 16 

Using this data, we can create a probability distribution
for the random variable X = “time to get food.” As we have 
done before, we divide each frequency (count) by the total 
number of observations. For example, to calculate the 
probability that a student will have to wait 10 minutes to 
get their food we divide: (the number of students in the 
sample that waited 10 minutes) by (the total number of 
students in the sample) = 52 / 200 = 0.26. 

X = 
Time 
(minutes) 

5 10 15 20 25 

P(X) 
30 / 

200 = 
0.15 

52 / 
200 = 
0.26 

62 / 
200 = 
0.31 

40 / 
200 = 
0.20 

16 / 
200 = 
0.08 

Here is the corresponding probability histogram: 
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A comment on probability histograms 

In this probability histogram, the area, instead of the 
height, is the probability. In general, when we work with 
probability histograms, the area will represent the 
probability, so we will not worry about the units on the y-
axis. Since the area represents the probabilities, the total 
area is 1. 

Because in this case we have the actual data in the first 
table, we start by using that table of actual counts to 
calculate the mean. However, usually all we have is the 
probability distribution, so we will also consider how to 
calculate the mean directly from this information alone. 

Calculating the Mean from the Frequency Table 

Time (minutes) 5 10 15 20 25 

Number of students 30 52 62 40 16 

We have 200 observations that are summarized in this 
table. We have 30 students with a time of 5 minutes, 52 

514  |  Discrete Random Variables (3 of 5)



students with a time of 10 minutes, 62 students with a time 
of 15 minutes, and so on. 

To calculate the mean (that is the average), we have to 
add 30 fives + 52 tens + 62 fifteens + 40 twenties + 16 
twenty-fives and then divide by 200. Here is that 
calculation: 

So the mean time for students to get their food in the 
cafeteria is 14 minutes. 

Calculating the Mean from the Probability Distribution 

Now let’s take a closer look at the calculation we just did. 

Notice that the large fraction on the left could be broken 
up into a sum of five smaller fractions all with the 
denominator 200: 

Okay, we are almost there. The last thing to do is rewrite 
each of these fractions like this: 

Here is the same equation with the fractions expressed as 
decimals: 

Look closely at the terms we are adding. In each case, we 
have the product of one of the possible values of X and its 
corresponding probability: 
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X = 
Time 
(minutes) 

5 10 15 20 25 

P(X) 
30 / 

200 = 
0.15 

52 / 
200 = 
0.26 

62 / 
200 = 
0.31 

40 / 
200 = 
0.20 

16 / 
200 = 
0.08 

As we can see, the mean is just a weighted average. That 
is, the mean is the weighted sum of all the possible values 
of the random variable X, where each value is weighted by 
its probability. 

Comment 

Why Is the Mean a Weighted Average? 
The mean of a discrete random variable X should give us a 

measure of the long-run average value for X. It therefore makes 
sense to count more heavily those values of X that have a high 
probability, because they are more likely to occur and will 
consequently influence the long-run average. On the other hand, 
those values of X with low probability will not occur very often, 
so they will have little effect on the long-run average. It therefore 
makes sense to not give them much weight in our calculation. 

The Formula for the Mean of a Discrete Random 
Variable 

Earlier in the course, when we calculated the mean of a data set, we 
used the symbol  (x-bar) to represent that value. We do not use 
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 to represent the mean of a random variable; instead we use 
(pronounced “mu-sub-x”). 

Here is the formula that we have come up with for the mean 
of a discrete random variable. Note that  represents the 

probability of x, where x is a value of the random variable X. 

Another term often used to describe the mean is expected value. 
It is a useful term because it reminds us that the mean of a random 
variable is not calculated on a fixed data set. Rather, the mean 
(expected value) is a measure of the expected long-term behavior of 
the random variable. 

Learn By Doing 

Drivers entering the short-term parking facility at an 
airport are given the option to purchase a parking permit 
for one of four possible time periods: ½ hour, 1 hour, 1½ 
hours, or 2 hours. Thus, for each driver who enters the 
parking facility, we can consider their choice of parking 
time as a discrete random variable. In this case, the random 
variable X has four possible values: 0.5, 1, 1.5, and 2. 

Assume that the probability distribution for X is given by 
the following table. 
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For example, reading from this table, it appears that there 
is a 15% chance that the next driver entering the parking 
facility will opt for a ½-hour permit. In the probability 
histogram, the area of each rectangle (not the height) is the 
probability of the corresponding x-value occurring. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=123 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=123 
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103. Discrete Random 
Variables (4 of 5) 

 

Learning Objectives 

• Use probability distributions for discrete and 
continuous random variables to estimate probabilities 
and identify unusual events. 

The Standard Deviation for a Discrete Random Variable 
The mean of a discrete random variable gives us a measure of the 

long-run average but it gives us no information at all about how 
much variability to expect. For example, earlier we found that the 
average cafeteria wait time at Rushmore Community College was 14 
minutes. Put in terms of our random variable, this means over the 
long run, if we continued to keep track of wait times for students 
entering the cafeteria, their times would average 14 minutes. Some 
students would get their food in less than 14 minutes, and some 
would have to wait longer. 

Is that all we need to know? Suppose on the one hand the average 
time was 14 minutes, but we knew that it was most likely that times 
would range from 8 to 20 minutes. Compare that to a situation 
where again the average time was 14 minutes, but it was most likely 
that times would range only from 13 to 15 minutes. That would give 
us a different picture of what the problem at the cafeteria might be. 
What we need is a measure of how much variability to expect in a 
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random variable X over the long run. The standard deviation is that 
measure. 

Just as we need both the mean and standard deviation to get 
a full picture of the shape of a data set, we need both the mean 
and standard deviation of a random variable to understand its likely 
long-term behavior. 

In Summarizing Data Graphically and Numerically, we used the 
following formula to compute the standard deviation of a data set. 

As you may recall, the most important part of this formula is the 
term inside the square root, which we call the average of the squares 
of the deviations from the mean. 

As we will see, the formula for the standard deviation for a 
discrete random variable has a lot in common with this formula. 

Here is the formula for the standard deviation of a discrete 
random variable. Note that  represents the probability of x, 

where x is a value of the random variable X. And  again stands 
for the mean of X. 

Again, we focus on the term inside the square root: 

The term  here represents the deviation of each value 

of the random variable X from the mean  , just as the term 
 represents the deviation of each observation of the data 

set from the mean  . 
In both cases, we proceed to sum the squares of these deviations. 

In the case of a data set, we divide by n − 1 to find the average 
squared deviation. However, in the case of a discrete random 
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variable, we again use a weighted average. Why? Because we don’t 
want to give undue weight to values of X that are unlikely to occur. 
So those values of X, even if far from the mean  , will not 
contribute much to the standard deviation if their probability is low. 
On the other hand, values of X with large probabilities will count 
more in our calculation of the standard deviation of X. 

Example 

Cafeteria Wait Times 

Let’s revisit the problem about wait times in the cafeteria 
at Rushmore Community College. Recall the following 
probability distribution. 

X = Time (minutes) 5 10 15 20 25 

P(X) 0.15 0.26 0.31 0.20 0.08 

On the previous page, we found that the average wait 
time is 14 minutes. Now we will compute the standard 
deviation of wait times and think a bit about what it tells us. 

We start by computing the squared deviations from the 
mean and weighting them by the probability. For the first 
value of X, we have 

Performing the same operation on the next three values 
of X will give us 
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Learn By Doing 

An interactive or media element has 

been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=124 

The next step of the formula is to add up the weighted 
square deviations from the mean, as follows: 
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Learn By Doing 

An interactive or media element has 

been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=124 

Recall that in Summarizing Data Graphically and Numerically we 
used the standard deviation of a quantitative data set to give a 
range of typical values. This range of typical values was formed 
by blocking off an interval 1 standard deviation to the right and 
left of the mean. In other words, the range of typical values was 

. Exactly the same thing can be done 

in the current context of random variables. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=124 
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104. Discrete Random 
Variables (5 of 5) 

 

Learning Objectives 

• Use probability distributions for discrete and 
continuous random variables to estimate probabilities 
and identify unusual events. 

Here is another example of how to use the mean and standard 
deviation of a discrete random variable to identify unusual values for 
a random variable. 

Example 

Changing Majors 

Here we have again the probability distribution of the 
number of changes in major. 
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X 0 1 2 3 4 5 6 7 8 

P
(X) 

0.
135 

0.
271 

0.
271 

0.1
80 

0.0
90 

0.0
36 

0.
012 

0.0
03 

0.0
02 

How often do we expect a college student to change 
majors? 

This question is asking for the expected value, which is 
the mean of the probability distribution. So we calculate 
the weighted average, as before: 

What is the standard deviation of the probability 
distribution? 

We have drawn lines to show the mean and 1 standard 
deviation above and below the mean. 

Recall that earlier, we discussed what would be 
considered an unusual (and not unusual) number of 
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changes in major, and we used probability calculations to 
assess that. For example, we found that changing majors 5 
or more times occurs only about 5% of the time and 
therefore can be considered unusual. 

Another way to think about defining “unusual” is to look 
at outcomes relative to the mean. We might consider 
outcomes more than 2 standard deviations above the mean 
as unusual. 

What values are more than 2 standard deviations above 
the mean of 2? 

Mean + 2 (standard deviation) = 
, which rounds 

to 5. 

We conclude from this line of reasoning that a college 
student who changes majors 5 or more times is “unusual.” 

In Summarizing Data Graphically and Numerically, we 
used the standard deviation to identify usual, or typical, 
values. We said that a typical range of values falls within 1 
standard deviation of the mean. We can use a similar idea 
here. 
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Learn By Doing 

An interactive or media element has 

been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=125 

Example 

Detecting Fraud 

Legitimate records often display a surprising pattern that 
is not present in faked tax returns or other fraudulent 
accounting records. In legitimate records, the distribution 
of first digits can be modeled using Benford’s law. For 
example, suppose the total income recorded on a tax return 
is $20,712. The first digit is 2. Now we examine a very large 
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number of tax returns and record the first digit of total 
income for all of the returns. The relative frequency of each 
first digit will behave according to Benford’s law. 

Benford’s law can also be described using a mathematical 
formula, but we will not go into that here. Instead, let’s 
double-check that this distribution meets the criteria for a 
probability distribution of a discrete random variable. For a 
randomly selected tax return, we cannot predict what the 
first digit will be, but the first digits behave according to a 
predictable pattern described by Benford’s law. The model 
assigns probabilities to all possible values for a first digit 
(notice that the first digit cannot be zero). All possible 
outcomes taken together have a probability of 1. You can 
verify this by adding together the probabilities in the table. 

Here is the probability distribution for first digits based 
on Benford’s law shown in a histogram. The mean is 
approximately 3.4, with a standard deviation of about 2.5 
(calculations not shown). 
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Now, let’s compare this distribution to real data. 

The second line in the following table is the probability 
distribution for the first significant digit in true tax data 
collected by Mark Nigrini from 169,662 IRS model files. You 
can see that relative frequencies of first digits in the 
legitimate tax records follow Benford’s law very closely. 

By comparison, here is the probability distribution for 
first digits in fraudulent tax records from a study of 
fraudulent cash disbursement and payroll expenditures 
conducted in 1995 by the district attorney’s office in Kings 
County, New York. For fraudulent data, the mean is 
approximately 5.2, with a standard deviation of about 0.9. 

Obviously, the relative frequencies of first digits from the 
fraudulent data do not follow Benford’s law (shown again 
below). The distributions have very different shapes, means, 
and standard deviations. Compared to legitimate data, in 
fraudulent data, we are much more likely to see numbers 
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with a first digit of 5 and much less likely to see numbers 
with a first digit of 1, 2, or 3. 

Comment 
When we compare the two distributions above, we can get a 

better understanding of the standard deviation of a random 
variable. The distribution in which it is more likely to find values that 
are further from the mean will have a larger standard deviation. 

Likewise, the distribution in which it is less likely to find values 
that are further from the mean will have a smaller standard 
deviation. 

In the fraudulent distribution, values like 1 or 2 that are far from 
the mean are very unlikely. On the other hand, in the Benford’s law 
distribution, the values 1 and 2 are quite likely. Indeed, the standard 
deviation of the Benford law is 2.5, which is larger than the standard 
deviation of 0.9 in the fraudulent distribution. 
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Learn By Doing 

Use the following histograms to answer the activity 
question: 

https://assessments.lumenlearning.com/assessments/
3563 

 
 

Let’s Summarize 

• The probability of an event is a measure of the likelihood that 
the event occurs. 

• Probabilities are always between 0 and 1. The closer the 
probability is to 0, the less likely the event is to occur. The 
closer the probability is to 1, the more likely the event is to 
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occur. 
• The two ways of determining probabilities are empirical and 

theoretical. 

◦ Empirical methods use a series of trials that produce 
outcomes that cannot be predicted in advance (hence the 
uncertainty). The probability of an event is approximated 
by the relative frequency of the event. 

◦ Theoretical methods use the nature of the situation to 
determine probabilities. Probability rules allow us to 
calculate theoretical probabilities. 

• Some common probability rules: 

◦ The probability of the complement of an event A can be 
found by subtracting the probability of A from 1: P(not A) = 
1 – P(A) 

◦ Events are called disjoint or mutually exclusive if they have 
no events in common. If A and B are disjoint events, then 
P(A or B) = P(A) + P(B). 

◦ When the knowledge of the occurrence of one event A 
does not affect the probability of another event B, we say 
the events are independent. If A and B are independent 
events, then P(A and B) = P(A) · P(B). 

• When we have a quantitative variable with outcomes that 
occur as a result of some random process (e.g., rolling a die, 
choosing a person at random), we call it a random variable. 

• There are two types of random variables: 

◦ Discrete random variables have numeric values that can be 
listed and often can be counted. 

◦ Continuous random variables can take any value in an 
interval and are often measurements. This type of random 
variable will be discussed in section 6.2. 

• A probability distribution of a random variable tells us the 
probabilities of all the possible outcomes (for discrete random 
variables) of the variable or ranges of values (for continuous 
random variables). A probability distribution shows us the 
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regular, predictable distribution of outcomes in a large number 
of repetitions of a random variable. 

• For a discrete random variable, the probabilities of values are 
areas of the corresponding regions of the probability 
histogram for the variable. 
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105. Introduction: Continuous 
Probability Distribution 

What you’ll learn to do: Use a probability 
distribution for a continuous random variable to 
estimate probabilities and identify unusual 
events. 

LEARNING OBJECTIVES 

• Use a probability distribution for a continuous 
random variable to estimate probabilities and identify 
unusual events. 

Introduction: Continuous Probability
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106. Continuous Probability 
Distribution (1 of 2) 

 

Learning Objectives 

• Use a probability distribution for a continuous 
random variable to estimate probabilities and identify 
unusual events. 

In the previous section, we learned about discrete probability 
distributions. We used both probability tables and probability 
histograms to display these distributions. In this section, we shift 
our focus from discrete to continuous random variables. We start by 
looking at the probability distribution of a discrete random variable 
and use it to introduce our first example of a probability distribution 
for a continuous random variable. 
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Example 

Shoe Size 

Let X = the shoe size of an adult male. X is a discrete 
random variable, since shoe sizes can only be whole and 
half number values, nothing in between. For this example 
we will consider shoe sizes from 6.5 to 15.5. So the possible 
values of X are 6.5, 7.0, 7.5, 8.0, and so on, up to and 
including 15.5. Here is the probability table for X: 

X 6.
5 7 7.5 8 8.5 9 9.5 10 10

.5 11 11.
5 

P
(X) 

0.
001 

0.0
03 

0.
007 

0.
018 

0.
034 

0.
054 

0.0
80 

0.
113 

0.
127 

0.
134 

0.
122 10

X 12.5 13 13.5 14 14.5 15 15.5 

P(
X) 

0.0
85 

0.0
52 

0.0
32 

0.0
16 

0.0
09 

0.0
04 

0.0
02 

And here is the probability histogram that corresponds to 
the table. 
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As is always the case for probability histograms, the area 
of the rectangle centered above each value is equal to the 
corresponding probability. For example, in the preceding 
table, we see that the probability for X = 12 is 0.107. 

In the probability histogram, the rectangle centered 
above 12 has area = 0.107. 

We write this probability as P(X = 12) = 0.107. 

And finally, as is the case for all probability histograms, 
because the sum of the probabilities of all possible 
outcomes must add up to 1, the sums of the areas of all of 
the rectangles shown must also add up to 1. 

Now we can find the probability of shoe size taking a 
value in any interval just by finding the area of the 
rectangles over that interval. For instance, the area of the 
rectangles up to and including 9 shows the probability of 
having a shoe size less than or equal to 9. 
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We can find this probability (area) from the table by 
adding together the probabilities for shoe sizes 6.5, 7.0, 7.5, 
8.0, 8.5 and 9. Here is that calculation: 

0.001 + 0.003 + 0.007 + 0.018 + 0.034 + 0.054 = 0.117Total 
area of the six green rectangles = 0.117 = probability of shoe 
size less than or equal to 9. We write this probability as P (X 
≤ 9) = 0.117. 

Recall that for a discrete random variable like shoe size, 
the probability is affected by whether or not we include the 
end point of the interval. For example, the area – and 
corresponding probability – is reduced if we consider only 
shoe sizes strictly less than 9: 
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This time when we add the probabilities from the table, 
we exclude the probability for shoe size 9 and just add 
together the probabilities for shoe sizes 6.5, 7.0, 7.5, 8.0, and 
8.5: 

0.001 + 0.003 + 0.007 + 0.018 + 0.034 = 0.063 

Total area of the five rectangles in green = 0.063 = 
probability of shoe size less than 9. We write this 
probability as 

P(X < 9) = 0.063 
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 Spotlight on Inequality Notation 

Here is a review of inequality notation: 

The symbol “<”means “less than” 

• Here is a correct use of this symbol: 3 < 12. We 
read this left to right as 3 is less than 12. 

• You can think of the “less than” symbol as an 
arrow pointing to the smaller number. 

• Some students remember the “less than” symbol 
from elementary school as a hungry alligator that 
is eating the larger number: 

• X < 12 means X is any number less than 12. If X 
represents shoe sizes, this includes whole and half 
sizes smaller than size 12. 

• P(X < 12) is the probability that X is less than 12. 
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The symbol “≤”means “less than or equal 
to” 

• X ≤ 12 means X can be 12 or any number less 
than 12. If X is shoe sizes, this includes size 12 as 
well as whole and half sizes less than size 12. 

• We often say “at most 12” to indicate X ≤ 12. 
• P(X ≤ 12) is the probability that X is 12 or less 

than 12. 

The symbol “>”means “greater than” 

• Here is a correct use of this symbol: 15 > 12. We 
read this left to right as 15 is greater than 12. 

• You can also think of the “greater than” symbol 
as an arrow pointing (as before) to the smaller 
number. 

• Or you can use the hungry alligator idea. The 
hungry alligator that is still eating the larger 
number: 

• X > 12 means X is any number greater than 12. If 
X is shoe sizes, this includes whole and half sizes 
larger than size 12. 
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• P(X > 12) is the probability that X is greater than 
12. 

The symbol “≥” means “greater than or 
equal to” 

• X ≥ 12 means X can be 12 or any number greater 
than 12. If X is shoe sizes, this includes size 12 as 
well as whole and half sizes greater than size 12. 

• We often say “at least 12” to indicate X ≥ 12. 
• P(X ≥ 12) is the probability that X is 12 or greater 

than 12. 

To indicate an interval we combine “less 
than” and “greater than” symbols: 

• To indicate the interval between 9 and 12, we 
write 9 < X < 12. This interval says “ 9 is less than X 
and X is also less than 12.” So this interval includes 
numbers greater than 9 but also less than 12. For 
example, 10 is in this interval but 13 is not. Also, 9 
and 12 are not in this interval. 

• P(9 < X < 12) is the probability that X is between 
9 and 12. 

• P(9 ≤ X ≤ 12) is the probability that X is the same 
interval except that the interval also includes 9 
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and 12. 

 

Transition to Continuous Random Variables 

Now we will make the transition from discrete to continuous 
random variables. Instead of shoe size, let’s think about foot length. 
Unlike shoe size, this variable is not limited to distinct, separate 
values, because foot lengths can take any value over a continuous 
range of possibilities. In other words, foot length, unlike shoe size, 
can be measured as precisely as we want to measure it. For example, 
we can measure foot length to the nearest inch, the nearest half 
inch, the nearest quarter of an inch, the nearest tenth of an inch, 
etc. Therefore, foot length is a continuous random variable. 

What happens to the probability histogram when we measure 
foot length with more precision? When we increase the precision 
of the measurement, we will have a larger number of bins in our 
histogram. This makes sense because each bin contains 
measurements that fall within a smaller interval of values. For 
example, if we measure foot lengths in inches, one bin will contain 
measurements from 6-inches up to 7-inches. But if we measure foot 
lengths to the nearest half-inch, then we now have two bins: one bin 
with lengths from 6 up to 6.5-inches and the next bin with lengths 
from 6.5 up to 7-inches. 

You can use the following simulation to see what happens to the 
probability histogram as the width of intervals decrease. Change the 
interval width by clicking on 0.5 in., 0.25 in., or 0.1 in. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=127 

At the bottom of the simulation is an option to add a curve. This 
curve is generated by a mathematical formula to fit the shape of the 
probability histogram. Check “Show curve” and click through the 
different bin widths. Notice that as the width of the intervals gets 
smaller, the probability histogram gets closer to this curve. More 
specifically, the area in the histogram’s rectangles more closely 
approximates the area under the curve. If we continue to reduce the 
size of the intervals, the curve becomes a better and better way to 
estimate the probability histogram. We’ll use smooth curves like this 
one to represent the probability distributions of continuous random 
variables. This idea is discussed in more detail on the next page. 
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107. Continuous Probability 
Distribution (2 of 2) 

 

Learning Objectives 

• Use a probability distribution for a continuous 
random variable to estimate probabilities and identify 
unusual events. 

Previously, we examined the probability distribution for foot length. 
For foot length and for all other continuous random variables, the 
probability distribution can be approximated by a smooth curve 
called a probability density curve. 

Recall that these smooth curves are mathematical models. We 
use a mathematical model to describe a probability distribution 
so that we can use technology and the equation of this model to 
estimate probabilities. (As we mentioned earlier, we do not study 
the equation for this curve in this course, but every statistical 
package uses this equation, and the area under the corresponding 
curve, to estimate probabilities.) 
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As in a probability histogram, the total area under the density 

curve equals 1, and the curve represents probabilities by area. To 
find the probability that X is in an interval, find the area above the 
interval and below the density curve. 

For example, if X is foot length, let’s find P(10 < X < 12), the 
probability that a randomly chosen male has a foot length anywhere 
between 10 and 12 inches. This probability is the area above the 
interval 10 < X < 12 and below the curve. We shaded this area with 
green in the following graph. 

 

Continuous Probability Distribution (2 of 2)  |  547



If, for example, we are interested in P(X < 9), the probability that 
a randomly chosen male has a foot length of less than 9 inches, we 
have to find the area shaded in green below: 

 

Comments 

1. We have seen that for a discrete random variable like shoe size, 
P(X < 9) and P(X ≤ 9) have different values. In other words, 
including the endpoint of the interval changes the probability. 
In contrast, for a continuous random variable like foot length, 
the probability of a foot length of less than or equal to 9 will be 
the same as the probability of a foot length of strictly less than 
9. In other words, P(X < 9) = P(X ≤ 9). Visually, in terms of our 
density curve, the area under the curve up to and including a 
certain point is the same as the area up to and excluding the 
point. This is because there is no area over a single point. 
There are infinitely many possible values for a continuous 
random variable, so technically the probability of any single 
value occurring is zero! 

2. It should be clear now why the total area under any probability 
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density curve must be 1. The total area under the curve 
represents P (X gets a value in the interval of its possible 
values). Clearly, according to the rules of probability, this must 
be 1, or always true. 

3. Density curves, like probability histograms, may have any 
shape imaginable as long as the total area underneath the 
curve is 1. Each density curve is a mathematical model with an 
equation that is used to find the area underneath the curve. 

Let’s Summarize 

The probability distribution of a continuous random variable is 
represented by a probability density curve. The probability that X 
has a value in any interval of interest is the area above this interval 
and below the density curve. 
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108. Introduction: Normal 
Random Variables 

What you’ll learn to do: Use a normal probability 
distribution to estimate probabilities and identify 
unusual events. 

LEARNING OBJECTIVES 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

550  |  Introduction: Normal Random
Variables



109. Normal Random 
Variables (1 of 6) 

 

Learning Objectives 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

In Summarizing Data Graphically and Numerically, we encountered 
data sets, such as height and weight, with distributions that are 
fairly symmetric with a central peak. We call these bell-shaped. 

Many variables, such as weight, shoe sizes, foot lengths, and other 
human physical characteristics, exhibit these properties. The 
symmetry indicates that the variable is just as likely to take a value 
a certain distance below its mean as it is to take a value that same 
distance above its mean. The bell shape indicates that values closer 
to the mean are more likely, and it becomes increasingly unlikely to 
take values far from the mean in either direction. 

We use a mathematical model with a smooth bell-shaped curve 
to describe these bell-shaped data distributions. These models are 
called normal curves or normal distributions. They were first 
called “normal” because the pattern occurred in many different 
types of common measurements. 

The general shape of the mathematical model used to generate a 
normal curve looks like this: 
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Observations of Normal Distributions 
There are many normal curves. Even though all normal curves 

have the same bell shape, they vary in their center and spread. 

 
Because normal curves are mathematical models, we use Greek 

letters to represent the mean and standard deviation of a normal 
curve. The mean of a normal distribution locates its center. We 
use the Greek letter μ (pronounced “mu” ) to represent the mean. 
We use the Greek letter σ (pronounced “sigma”) to represent the 
standard deviation of a normal distribution. The standard deviation
determines the spread of the distribution. In fact, the shape of a 
normal curve is completely determined by specifying its standard 
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deviation. As we will see, if two normal distributions have the same 
standard deviation, then the shapes of their normal curves will be 
identical. 

Following are some observations we can make as we look at the 
figure above: 

• The black and the red normal curves have means or centers at 
μ = 10. However, the red curve is more spread out and thus has 
a larger standard deviation. Notice that the red normal curve is 
also shorter. This makes sense because these curves are 
probability density curves, so the area under each curve has to 
be 1. 

• The black and the green normal curves have the same standard 
deviation or spread. 

Comment 

• We use  to represent the mean of data in a sample. We use μ 
to represent the mean of a density curve defined by a 
mathematical model. 

• We use SD or  to represent the standard deviation of data in 
sample. We use σ to represent the standard deviation of a 
density curve defined by a mathematical model. 

The normal curve has a central role in statistical inference, as we’ll 
see in Linking Probability to Statistical Inference. Understanding 
the normal distribution is an important step in the direction of 
our overall goal, which is to relate sample means or proportions 
to population means or proportions. The goal of this section is 
to help you better understand normal random variables and their 
distributions. 

All normal curves share a basic geometry. While the mean locates 
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the center of a normal curve, it is the standard deviation that is in 
control of the geometry. To see how, let’s examine a few pictures of 
normal curves to see what they reveal. 

Example 

One Standard Deviation on Each Side of 
the Mean 

Let’s start with a random variable X that has a normal 
distribution with mean = 10 and standard deviation = 2. 
Let’s practice our new notation. Here we would write μ = 10 
and σ = 2 . 

The normal curve for X is shown below. 
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As expected, the mean μ = 10 is located at the center of 
the normal curve. The other two arrows point to values 1 
standard deviation on each side of the mean. 

The point 1 standard deviation less than the mean is 
represented by μ − σ . Since μ = 10 and σ = 2, this point is 
located at 10 − 2 = 8, as shown. 

The point 1 standard deviation more than the mean is 
represented by μ + σ . Since μ = 10 and σ = 2, this point is 
located at 10 + 2 = 12, as shown. 

You will notice we have indicated that the area of the 
green region is 0.68. So we can say that the probability of X 
being between 8 and 12 equals 0.68. 

Or, using our probability notation, we could write: 

Now here is an interesting fact. If we took any normal 
distribution and drew a similar picture, the probability that 
a value falls within 1 standard deviation of the mean is 
always the same. Here are several ways to express this idea: 

• For any normal curve, the central area within 1 
standard deviation of the mean equals 0.68. 

• Roughly 68% of the time we will expect X to have a 
value within 1 standard deviation of the mean. 

• . 

This is a big deal. It is one of the things that makes 
normal curves special. In general, probability density 
curves for continuous random variables with different 
shapes don’t have this special property. 

Let’s put this idea in context. If the weight of babies at 
birth follows a normal distribution with mean μ = 3,500 
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grams and standard deviation σ = 600 grams, then we can 
conclude that most babies – that is, about 68% – will weigh 
somewhere between 2,900 grams (i.e., 3,500 − 600 = 2,900) 
and 4,100 grams (i.e., 3,500 + 600 = 4,100). 
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110. Normal Random 
Variables (2 of 6) 

 

Learning Objectives 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

Example 

Beyond One Standard Deviation from the 
Mean 

Earlier we stated that for all normal curves, the area 
within 1 standard deviation of the mean will equal 0.68. 
From this fact, we can see that the area outside of this 
region equals 1 − 0.68 = 0.32. And since normal curves are 
symmetric, this outside area of 0.32 is evenly divided 
between the two outer tails. So the area of each tail = 0.16. 
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The outer tail areas allow us to answer related probability 
questions: 

• Question: What is the probability that a normal 
random variable is more than 1 standard deviation 
from its mean? 

• Answer: 0.32 
• Question: What is the probability that a normal 

random variable is more than 1 standard deviation 
larger than its mean? 

• Answer: 0.16 

Before leaving this example, we highlight one more 
geometric fact about normal curves. Look at the arrows 
pointing at the normal curve in the following figure. 
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At these points, the curve changes the direction of its 
bend and goes from bending upward to bending downward, 
or vice versa. A point like this on a curve is called an 
inflection point. Every normal curve has inflection points 
at exactly 1 standard deviation on each side of the mean. 

With the following simulation, you can look at a variety of normal 
curves. Use the slider to change the standard deviation. As you 
change the standard deviation, you will of course get different 
normal curves. Observe that the two properties we discussed in the 
examples remain true for any standard deviation you select: 

• The probability that a value is within 1 standard deviation of 
the mean is 68%. 

• The x-values of the inflection points correspond to 1 standard 
deviation above and below the mean. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=131 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=131 

Now we extend this idea to look at the probability of a value falling 
within 2 standard deviations of the mean or 3 standard deviations of 
the mean. 

If X is a normal random variable with mean  and standard 
deviation , then 

1. The probability that X is within 1 standard deviation of the 
mean equals approximately 0.68.
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2. The probability that X is within 2 standard deviations of the 
mean equals approximately 0.95.

3. The probability that X is within 3 standard deviations of the 
mean equals approximately 0.997.
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To summarize using probability notation: 

These three facts together are called the empirical rule for 
normal curves. 

Comment 

Let’s take a moment to look a bit deeper at what the empirical rule 
tells us. 

• The first statement of the empirical rule really defines a range 
of likely values of X. It gives us an interval – within 1 standard 
deviation of the mean – that contains the central 68% of the 
values. This statement is very similar to statements about the 
interquartile range (IQR) that we saw back in the module 
Summarizing Data Graphically and Numerically. The IQR is the 
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width of the interval that captures the central 50% of the data 
points of a quantitative distribution. 

• The second and third statements in the empirical rule help us 
identify values that are unlikely to occur. Compare this to the 
discussion in Summarizing Data Graphically and Numerically 
where we defined an outlier to be a value that is either more 
than 1.5 IQRs above quartile 3 or more than 1.5 IQRs below 
quartile 1. Here we can make the following characterizations of 
extreme values in normal distributions. 

◦ 95% of values fall within 2 standard deviations of the 
mean. It is therefore unlikely for a value to fall more than 2 
standard deviations away from the mean. Values more 
than 2 standard deviations away from the mean in a 
normal distribution are often called outliers. 

◦ 99.7% of values fall within 3 standard deviations of the 
mean. It is therefore extremely unlikely for a value to fall 
more than 3 standard deviations away from the mean. 
Values more than 3 standard deviations away from the 
mean are often called extreme outliers. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=131 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=131 
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111. Normal Random 
Variables (3 of 6) 

 

Learning Objectives 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

Example 

The Empirical Rule in a Context 

Suppose that foot length of a randomly chosen adult male 
is a normal random variable with mean  and 

standard deviation  . Then the empirical rule lets 
us sketch the probability distribution of X as follows: 
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(a) What is the probability that a randomly chosen 
adult male will have a foot length between 8 and 14 
inches? 

Answer: 0.95, or 95% 
(b) An adult male is almost guaranteed (0.997 

probability) to have a foot length between what two 
values? 

Answer: 6.5 and 15.5 inches 
(c) The probability is only 2.5% that an adult male 

will have a foot length greater than how many inches? 
Answer: 14 inches 

Ninety-five percent of the area is within 2 standard 
deviations of the mean, so 2.5% of the area is in the tail 
above 2 standard deviations. The x-value 2 standard 
deviations above the mean is 14 inches. 
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Now you should try a few: questions (d), (e), and (f) are presented in 
the Learn By Doing activity. Use the figure preceding question (a) to 
help you. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=132 

Comment 
Notice that there are two types of problems we may want to solve: 

those like (a) and, from the Learn By Doing activity, (d) and (e), in 
which a particular interval of values of a normal random variable is 
given and we are asked to find a probability; and those like (b), (c), 
and, from the Learn By Doing, (f), in which a probability is given and 
we are asked to identify values of the normal random variable. 
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112. Normal Random 
Variables (4 of 6) 

 

Learning Objectives 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

Let’s go back to our example of foot length: How likely or unlikely is 
it for a male’s foot length to be more than 13 inches? 

 
Because 13 inches doesn’t happen to be exactly 1, 2, or 3 standard 
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deviations away from the mean, we could give only a very rough 
estimate of the probability at this point. Clearly, the empirical rule 
only describes the tip of the iceberg, and although it serves well 
as an introduction to the normal curve and gives us a good sense 
of what would be considered likely and unlikely values, it is very 
limited in the probability questions it can help us answer. 

Here is another familiar normal distribution: 

 
Suppose we are interested in knowing the probability that a 

randomly selected student will score 633 or more on the math 
portion of her SAT (this is represented by the red area). Again, 633 
does not fall exactly 1, 2, or 3 standard deviations above the mean. 
Notice, however, that a SAT score of 633 and a foot length of 13 
are both about one-third of the way between 1 and 2 standard 
deviations. As you continue to read this page, you’ll realize that this 
positioning relative to the mean is the key to finding probabilities. 

Finding Probabilities for a Normal Random 
Variable 

As we saw, the empirical rule is very limited in helping us answer 
probability questions. It is limited to questions involving values that 
fall exactly 1, 2, and 3 standard deviations away from the mean. 

We can approach the answering of probability questions in two 
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possible ways: a table and technology. In the next section, you 
will learn how to use technology to convert between z-scores and 
probabilities. 

Standardizing Values 

The first step to assessing a probability associated with a normal 
value is to determine the relative value with respect to all the other 
values taken by that normal variable. This is accomplished by 
determining how many standard deviations below or above the 
mean that value is. 

Example 

Foot Length 

How many standard deviations below or above the mean 
male foot length is 13 inches? Since the mean is 11 inches, 13 
inches is 2 inches above the mean. Since a standard 
deviation is 1.5 inches, this would be 2 / 1.5 = 1.33 standard 
deviations above the mean. Combining these two steps, we 
could write: 

(13 in. − 11 in.) / (1.5 in. per standard deviation) = (13 − 11) / 
1.5 standard deviations = +1.33 standard deviations 

In the language of statistics, we have just found the z-score for a 
male foot length of 13 inches to be z = +1.33. Or, to put it another way, 
we have standardized the value of 13. In general, the standardized 
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value z tells how many standard deviations below or above the mean 
the original value is. It is calculated as follows: 

z-score = (value – mean) / standard deviationThe convention is to 
denote a value of our normal random variable X with the letter x. 
Since the mean is written μ and the standard deviation σ, we may 
write the standardized value as 

Notice that since σ is always positive, for values of x above the 
mean (μ), z will be positive; for values of x below μ, z will be negative. 
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Example 

Standardizing Foot Measurements 

Let’s go back to our foot length example and answer 
some more questions. 

(a) What is the standardized value for a male foot 
length of 8.5 inches? How does this foot length relate 
to the mean? 

z = (8.5 − 11) / 1.5 = −1.67. This foot length is 1.67 
standard deviations below the mean. 

(b) A man’s standardized foot length is +2.5. What is 
his actual foot length in inches? If z = +2.5, then his 
foot length is 2.5 standard deviations above the mean. 
Since the mean is 11 and each standard deviation is 
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1.5, we get that the man’s foot length is 11 + 2.5(1.5) = 
14.75 inches. 

Thez-score also allows us to compare values of different 
normal random variables. Here is an example: 

(c) In general, women’s foot length is shorter than 
men’s. Assume that women’s foot length follows a 
normal distribution with a mean of 9.5 inches and 
standard deviation of 1.2. Ross’s foot length is 13.25 
inches, and Candace’s foot length is only 11.6 inches. 
Which of the two has a longer foot relative to his or 
her gender group? 

To answer this question, let’s find the z-score of each of 
these two normal values, bearing in mind that each value 
comes from a different normal distribution. 

Ross: z-score = (13.25 − 11) / 1.5 = 1.5 (Ross’s foot length is 
1.5 standard deviations above the mean foot length for 
men). 

Candace: z-score = (11.6 − 9.5) / 1.2 = 1.75 (Candace’s foot 
length is 1.75 standard deviations above the mean foot 
length for women). 

Note that even though Ross’s foot is longer than 
Candace’s, Candace’s foot is longer relative to their 
respective genders. 

To Sum Up…Problem (c) illustrates how z-scores become crucial 
when you want to compare distributions. 

 

574  |  Normal Random Variables (4 of 6)



113. Normal Random 
Variables (5 of 6) 

 

Learning Objectives 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

We now know that the empirical rule gives probabilities for values 
that lie exactly 1, 2, and 3 standard deviations away from the mean. 
But how do we determine the probability that a value lies some 
fraction of a standard deviation away from the mean? In this 
situation, we will use technology to find the probability. 

For now, we use a simulation to find the probability based on a 
z-score. Statistical packages can also be used to find probabilities 
associated with a normal curve. 
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Example 

The Distribution of z-Scores 

Recall that we use the area under a normal density curve 
to find a probability. If we convert the x-values into 
z-scores, the distribution of z-scores is also a normal 
density curve. This curve is called the standard normal 
distribution. 

Here we compare the normal density curve for the foot 
lengths to the standard normal curve: 

The normal curve pictured on top is the model for the 
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distribution of foot lengths. Note that the values on the axis 
are foot lengths. The distribution has a mean of 11 inches 
and a standard deviation of 1.5 inches. A foot length of 13 
inches is marked. The shaded area is 0.0918. This is the 
probability that a randomly selected male will have a foot 
length greater than 13 inches: P(X > 13) = 0.0918. 

The normal curve pictured on bottom is the standard 
normal distribution. This represents the distribution of 
z-scores. Note that the values on the axis are z-scores. The 
mean is 0 and the standard deviation is 1. The z-score 
corresponding to X = 13 inches is marked. 

The shaded area here is the same, 0.0918. This is the 
probability that a z-score is greater than 1.33: P(Z > 1.33) = 
0.0918. 

Here is the main idea: Since the areas are the same, we 
use the standard normal curve to find the probabilities 
associated with any normal density curve. 

Note: The standard normal distribution always has a 
mean = 0 and a standard deviation = 1. To understand this, 
recall that a z-score is the number of standard deviations X 
is above (or below) the mean. 

• When the x-value is the mean, the z-score is 0. 
• We can illustrate this for the foot lengths: If X is the 

mean, then 

• When X is 1 standard deviation above the mean, the 
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z-score is 1. 
• We can illustrate this for the foot lengths: If x-value 

is 1 standard deviation above the mean, X = 11 + 1.5 = 
12.5. 

• Similarly, the z-score for the x-value that is 1 
standard deviation below the mean is −1. 

Example 

Using the Standard Normal Curve to Find 
Probabilities 

We use a simulation based on the standard normal 
distribution to find probabilities. In this simulation, the 
numbers on the horizontal axis are z-scores. The areas are 
rounded to four decimal places, so these areas are not 
exact values. 
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Use this image from the simulation to find the 
probabilities: 

• Find P(−1.21 < Z < 1.21). In words, we want to find the 
probability that the z-score is between −1.21 and 1.21. 
This probability is the light blue area. So the answer is 
0.7737. 

• Find P(Z > 1.21). In words, we want to find the 
probability that the z-score is greater than 1.21. This 
probability is the blue area to the right of Z = 1.21. So 
the answer is 0.1131. 

• Find P(Z < −1.21). In words, we want to find the 
probability that the z-score is less than −1.21. This 
probability is the dark blue area to the left of Z = −1.21. 
So the answer is 0.1131. Note that this is the same as 
P(Z > 1.21) because of the symmetry in the normal 
distribution. Both tails have the same area. 
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• Find P(Z > −1.21). In words, we want to find the 
probability that the z-score is greater than −1.21. This 
probability is the area to the right of −1.21. This is the 
sum of the green area and the dark blue area. So the 
answer is 0.7737 + 0.1131 = 0.8868. 

Note: Here is another way to use the simulation to find 
P(Z > −1.21). Here we moved one slider as far to the left as 
possible, then located the other slider at Z = −1.21. 

Notice that the area is 0.8869, not 0.8868. This 
discrepancy is due to rounding. The simulation uses a 
mathematical model to find the areas. These areas are 
rounded to four decimal places. Don’t worry about this 
small difference. Either answer is acceptable. 

We now practice using the simulation based on the standard normal 
curve to find probabilities. Later we use this same simulation to find 
probabilities for any normal distribution. 

Click here to open this simulation in its own window. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=134 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=134 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=134 

Click here to open the above simulation in its own window. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=134 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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excluded from this version of the text. You can 
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114. Normal Random 
Variables (6 of 6) 

 

Learning Objectives 

• Use a normal probability distribution to estimate 
probabilities and identify unusual events. 

Now we use the simulation and the standard normal curve to find 
the probabilities associated with any normal density curve. 

Example 

Length of Human Pregnancy 

The length (in days) of a randomly chosen human 
pregnancy is a normal random variable with μ = 266, σ = 16. 
So X = length of pregnancy (in days) 

(a) What is the probability that a randomly chosen 
pregnancy will last less than 246 days? 
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We want P(X < 246). To find this probability, we first 
convert X = 246 to a z-score: 

Now we can use the simulation to find P(Z < −1.25). This is 
the area under the normal probability curve to the left of Z 
= −1.25. 

The probability that a randomly chosen pregnancy lasts 
less than 246 days is 0.1056. In other words, there is an 11% 
chance that a randomly selected pregnancy will last less 
than 246 days. 

(b) Suppose a pregnant woman’s husband has scheduled 
his business trips so that he will be in town between the 
235th and 295th days of her pregnancy. What is the 
probability that the birth will take place during that time? 

Compute the z-scores for each of these x-values: 
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and 

Use the simulation to find the area under the standard 
normal curve between these two z-scores. 

So the desired probability is 0.9387. 

There is about a 94% probability that he will be home for 
the birth. Looks like he planned well. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=135 

The previous examples all followed the same general form: Given 
values of a normal random variable, we found an associated 
probability. The two basic steps in the solution process were as 
follows: 

1. Convert x-value to a z-score. 
2. Use the simulation to find associated probability. 

The next example is a different type of problem: Given a 
probability, we will find the associated value of the normal random 
variable. The solution process will go in reverse order. 

1. Use a new simulation to convert statements about probabilities 
to statements about z-scores. 

2. Convert z-scores to x-values. 
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These types of problems are informally called “work-backwards” 
problems. We will use a new simulation for these types of problems. 
The new simulation requires us to enter a probability and then gives 
us the associated z-score. This is backwards from the simulation 
we worked with previously where we entered a z-score to find a 
probability. We will use this simulation in the next example. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=135 

Example 

Work Backwards to Find X 

Foot length (in inches) of a randomly chosen adult male is 
a normal random variable with a mean of 11 and standard 
deviation of 1.5. So X = foot length (inches). 

(a) Suppose that an XL sock is designed to fit the largest 
30% of men’s feet. What is the smallest foot length that fits 
an XL sock? 

Step 1: Use the simulation to convert the probability to a 
statement about z-scores. 
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We want to mark off the largest 30% of the distribution, 
so the probability to the right of the z-score is 30%. This 
means that 70% of the area is to the left of the z-score. 

From the simulation, we can see that the corresponding 
z-score is 0.52. 

Step 2: Now we need to convert this z-score to a foot 
length. 

Before we calculate the length, note that the z-score is 
about 0.5, so the x-value will be about 0.5 standard 
deviations above the mean. 

Conclusion: A foot length of 11.75 inches is the shortest 
foot for an XL sock. 

(b) What is the first quartile for the men’s foot lengths? 

Step 1: Use the simulation to convert this probability into 
a statement about z-scores. 
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We want to mark off the smallest 25% of the distribution, 
so the probability to the left of the z-score is 25%. 

From the simulation, we can see that the corresponding 
z-score is −0.67. 

Step 2: Convert this z-score to a foot length. If X is the 
foot length we seek, then X is 0.67 standard deviations 
below the mean. That is, 

Conclusion: The first quartile mark is 9.995 inches, so 
about 25% of the men’s feet are shorter than 10 inches. 

Comments 

In the preceding example (specifically step 2), we found the x-value 
by reasoning about the meaning of the z-score. We can also develop 
a formula for this process. 
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Recall the definition of z-score. In words, the z-score of an 
x-value is the number of standard deviations X is away from the 
mean. As a formula, this is 

We can solve this equation for X as follows: 

This gives us a formula for finding X from Z. You can use this 
formula in step 2 of a work-backwards problem. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=135 
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Let’s Summarize 

• In “Continuous Random Variables,” we made the transition 
from discrete to continuous random variables. A continuous 
random variable is not limited to distinct values. It is a 
measurement such as foot length. We cannot display the 
probability distribution for a continuous random variable with 
a table or histogram. We use a density curve to assign 
probabilities to intervals of x-values. We use the area under the 
density curve to find probabilities. 

• We use a normal density curve to model the probability 
distribution for many variables, such as weight, shoe sizes, foot 
lengths, and other human physical characteristics. Normal 
curves are mathematical models. We use µ to represent the 
mean of a normal curve and σ to represent the standard 
deviation of a normal curve. We use Greek letters to remind us 
that the normal curve is not a distribution of real data. It is a 
mathematical model based on a mathematical equation. We 
use this mathematical model to represent the perfect bell-
shaped distribution. 

• For a normal curve, the empirical rule for normal curves tells us 
that 68% of the observations fall within 1 standard deviation of 
the mean, 95% within 2 standard deviations of the mean, and 
99.7% within 3 standard deviations of the mean. 

• To compare x-values from different distributions, we 

standardize the values by finding a z-score: 

• A z-score measures how far X is from the mean in standard 
deviations. In other words, the z-score is the number of 
standard deviations X is from the mean of the distribution. For 
example, Z = 1 means the x-value is 1 standard deviation above 
the mean. 

• If we convert the x-values into z-scores, the distribution of 
z-scores is also a normal density curve. This curve is called the 
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standard normal distribution. We use a simulation with the 
standard normal curve to find probabilities for any normal 
distribution. 

• We can also work backwards and find the x-value for a given 
probability. We used a different simulation to work backwards 
from probabilities to x-values. With this simulation, we found 
x-values corresponding to quartiles and percentiles. 

Are You Ready for the Checkpoint? 

If you completed all of the exercises in this module, you should 
be ready for the Checkpoint. To make sure that you are ready for 
the Checkpoint, use the My Response link below to evaluate your 
understanding of the learning objectives for this module and to 
submit questions that you may have. 
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115. Putting It Together: 
Probability and Probability 
Distribution 

 

Let’s Summarize 

Here is a summary of the key concepts developed in this module: 

• The probability of an event is a measure of the likelihood that 
the event occurs. Probabilities are always between 0 and 1. The 
closer the probability is to 0, the less likely the event is to 
occur. The closer the probability is to 1, the more likely the 
event is to occur. 

• The two ways of determining probabilities are empirical and 
theoretical. 

◦ Empirical methods are based on data. The probability of an 
event is approximated by the relative frequency of the 
event. 

◦ Theoretical methods use the nature of the situation to 
determine probabilities. 

• Following are some common probability rules: 

◦ P(not A) = 1 − P(A). 
◦ When two events have no outcomes in common, they are 

disjoint. If A and B are disjoint events, P (A or B) = P(A) + 
P(B). 

◦ When the knowledge of the occurrence of one event A 
does not affect the probability of another event B, we say 
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the events are independent. If A and B are independent 
events, P(A and B) = P( A) · P(B). 

• When we have a quantitative variable with outcomes that 
occur as a result of some random process (e.g., rolling a die, 
choosing a person at random), we call it a random variable. 
There are two types of random variables: 

◦ Discrete random variables have numeric values that can be 
listed and often can be counted. We find probabilities 
using areas in a probability histogram. 

◦ Continuous random variables can take any value in an 
interval and are often measurements. We use a density 
curve to assign probabilities to intervals of x-values. We 
use the area under the density curve to find probabilities. 

• We use a normal density curve to model the probability 
distribution for many variables, such as weight, shoe sizes, foot 
lengths, and other physical characteristics. For a normal curve, 
the empirical rule for normal curves tells us that 68% of the 
observations fall within 1 standard deviation of the mean, 95% 
within 2 standard deviations of the mean, and 99.7% within 3 
standard deviations of the mean. 

• To compare x-values from different distributions, we 

standardize the values by finding a z-score: 

• A z-score measures how far X is from the mean in standard 
deviations. In other words, the z-score is the number of 
standard deviations X is from the mean of the distribution. For 
example, Z = 1 means the x-value is one standard deviation 
above the mean. 

• If we convert the x-values into z-scores, the distribution of 
z-scores is also a normal density curve. This curve is called the 
standard normal distribution. We use a simulation with the 
standard normal curve to find probabilities for any normal 
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distribution. 
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PART VII 

CHAPTER 7: LINKING 
PROBABILITY TO 
STATISTICAL INFERENCE 
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116. Why It Matters: Linking 
Probability to Statistical 
Inference 

 
This module introduces our study of inference. Before we begin 

Linking Probability to Statistical Inference, let’s look at how the 
remainder of the course relates to the Big Picture of Statistics. 

Recall that we start a statistical investigation with a research 
question. The investigation proceeds with the following steps: 

• Produce Data: Determine what to measure, then collect the 
data. ← Types of Statistical Studies and Producing Data 

• Explore the Data: Analyze and summarize the data. ← 
Summarizing Data Graphically and Numerically, Examining 
Relationships: Quantitative Data, Nonlinear Models, 
Relationships in Categorical Data with Intro to Probability 

• Draw a Conclusion: Use the data, probability, and statistical 
inference to draw a conclusion about the population. ← 
Relationships in Categorical Data with Intro to Probability, 
Probability and Probability Distributions, Linking Probability 
to Statistical Inference, Inference for One Proportion, 
Inference for Two Proportions, Inference for Means, Chi-
Square Tests 

In the Big Picture of Statistics, we are about to start the last step: 
Inference. We use data from a sample to “infer” something about the 
population in this and the upcoming modules. Inference is based on 
probability. 
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Example 

At the end of April 2005, ABC News and the Washington 
Post conducted a poll to determine the percentage of U.S. 
adults who support the death penalty. 

Research question: What percentage of U.S. adults 
support the death penalty? 

Steps in the statistical investigation: 

1. Produce Data: Determine what to measure, then 
collect the data.The poll selected 1,082 U.S. adults at 
random. Each adult answered this question: “Do you 
favor or oppose the death penalty for a person 
convicted of murder?” 

2. Explore the Data: Analyze and summarize the 
data.In the sample, 65% favored the death penalty. 

3. Draw a Conclusion: Use the data, probability, and 
statistical inference to draw a conclusion about the 
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population. 

Our goal is to determine the percentage of the U.S. adult 
population that support the death penalty. We know that 
different samples give different results. What are the 
chances that a sample reflects the opinions of the 
population within 3%? Probability describes the likelihood 
that a sample is this accurate, so we can say with 95% 
confidence that between 62% and 68% of the population 
favor the death penalty. 

 

 
We illustrated the Big Picture of Statistics with an example about 

an inference made from survey data. From a random sample of U.S. 
adults, we estimated the percentage of all U.S. adults who support 
the death penalty. We saw that probability describes the likelihood 
that an estimate is within 3% of the true percentage with this 
opinion in the population. For this example, there is a 95% chance 
that a random sample is within 3% of the true population 
percentage. 
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Because random samples vary, inference always involves 
uncertainty. This uncertainty is captured by probability statements 
that are part of our conclusions. We emphasize this point in the 
following example where we look more closely at the process of 
statistical investigation with a real court case. Our goal is to identify 
arguments that use statistical inference to draw a conclusion as well 
as arguments that do not use inference. 

EXAMPLE 

Using Inference to Detect Cheating – A 
Real Case 

How can a prosecutor use data to detect cheating? The 
details of this case appeared in Chance magazine in 1991. 

The Case: During an exam at a university in Florida in 
1984, the proctor suspected that one student, whom we will 
call Student C, was copying answers from another student, 
whom we will call Student A. The proctor accused Student 
C of cheating, and the case went to the university’s 
supreme court. 

The Evidence: At the trial, the prosecution introduced 
evidence based on data. Here is the evidence: On the 16 
questions missed by both Student A and Student C, 13 of 
the answers were the same. 

The Argument: The prosecutor used the data to draw an 
inference based on probability. He asked the question: 
Could 13 out of 16 matches be due to chance? He argued 
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that a match of 13 out of 16 by chance alone was very 
unlikely. The probability of this occurring is very small. So 
there had to be another explanation besides chance, and 
the prosecutor said the explanation was cheating. Based on 
this evidence, Student C was found guilty of academic 
dishonesty. 

The Role of Random Chance: To decide if we agree with 
this argument, we need to understand if chance might 
explain this result. We need to determine if it would be 
unusual to get 13 matches on 16 questions by chance alone. 
To determine if 13 out of 16 is unusual, we have to look at 
what happens in the long run if students just guess on 16 
multiple choice questions. 

Let’s assume that each question had four options: a, b, c, 
or d. We use a computer program to randomly assign 
answers to each question, which mimics what happens 
when someone randomly guesses. Using software to 
imitate chance behavior is called simulation. 

Here you see a representation of answers from Student A 
and Student C as well as three randomly generated answer 
sets for the 16 questions missed by both Student A and 
Student C. We highlighted matches with Student A’s 
answers in green. 
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Notice that Student C has 13 answers that match Student 
A’s answers: As a proportion, this is 13 ÷ 16 = 0.8125. It 
means that about 81% of the time, Student C’s answers 
matched Student A’s answers on questions that they both 
missed. 

For the random answers generated by “guessing,” we see 
the proportion of matches differs: 

• Set 1 has 6 matches with Student A: 6 ÷ 16 = 0.375 as 
a proportion, or about 38%. 

• Set 2 has 3 matches with Student A: 3 ÷ 16 = 0.1875 
as a proportion, or about 19%. 

• Set 3 has 5 matches with Student A: 5 ÷ 16 = 0.3125 
as a proportion, or about 31%. 

The proportion of matches in the randomly generated 
answers vary quite a bit, from 0.1875 to 0.3125. But none are 
close to the proportion of matches seen in Student C’s 
paper, 0.8175. The proportion of matches for the three sets 
of results from the random guesses are graphed in the 
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following figure. The blue line is the proportion of matches 
for Student C. 

 

Now we repeat the simulation of random sets of answers 
on the 16 questions, each time determining the proportion 
of matches to the wrong answers on Student A’s paper. On 
the left is a dotplot for 100 random sets of answers. Each 
dot represents a set of 16 answers generated by random 
guessing. On the right is a histogram of 1,025 random sets 
of answers, which shows the long-run pattern. 

 

Analysis: In the histogram, we see that typical results fall 
between about 0.1 and 0.4. More specifically, if a student 
randomly guessed on these 16 questions, it would not be 
surprising to see from 2 to 6 matches with Student A’s 
wrong answers. Translated into proportions, this is 2 ÷ 16 = 
0.125 to 6 ÷ 16 = 0.375. 

Is Student C unusual? Yes. Notice that no randomly 
generated set of answers comes close to the proportion of 
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matches on Student C’s exam. A proportion of 0.8125 would 
be very unusual if guessing, so we conclude that Student C 
was not guessing. 

Conclusion: The prosecution argued that a match of 13 
out of 16 wrong answers (a proportion of 0.8125) was 
unusual and could not be explained by random chance. Our 
simulation agrees with this observation. When we created 
answer sets by randomly guessing, we never saw more than 
9 matches out of 16, which is a proportion of 0.5625. We 
agree with the prosecution that there has to be another 
explanation besides chance. 

However, could there be another explanation besides 
cheating? 

Yes. If you don’t know the answer to a question on an 
exam, you rarely guess at random. It is more likely that you 
will make an educated guess. Some wrong answers might 
be more logical than others. This could also explain the 
large proportion of matches on wrong answers between the 
two students. So this evidence is not convincing evidence 
that Student C cheated, but we know that he did not just 
guess. 

EXAMPLE 

Follow-up Argument Based on 
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Exploratory Data Analysis 

Student C appealed his case. A second trial was held. This 
time the prosecution made a different argument using data. 
This argument did not use statistical inference. 

The prosecution created a new measurement. They 
compared every student’s paper to Student A’s paper. For 
the 40-multiple choice questions on the test, they counted 
the number of matches to Student A’s paper and divided by 
40. This new measurement was also a proportion. 

Analysis: There were 88 students. Here are the results: 

 

Each dot represents a student who took the exam. A dot 
with a proportion of 0.6 means that 60% of this student’s 
answers matched Student A’s answers. 

Note: Student A is included in the data. Of course, 
Student A is the dot with the proportion of 40 out of 40 = 
1.0 This makes sense because all of Student A’s answers 
matched Student A. (This does not mean that Student A did 
well on the exam.) 

We see that many of the proportions fall between 
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between 0.40 (which is 16 matches out of 40) and 0.60 
(which is 24 matches out of 40). So it is not surprising if 
between 40% and 60% of a student’s answers matched 
Student A’s answers. 

Student C had 32 matches out of 40, which is a 
proportion of 0.80. (This does not mean that Student C 
made an 80% on the exam. It means that 80% of Student 
C’s answers matched Student A’s answers.) Student C is 
once again an unusual data point. 

Conclusion: This time it is harder to argue that Student C 
is not cheating. When we compare him to the rest of the 
class, his paper had an unusually high number of matches 
with Student A’s answers. This data together with the 
proctor’s testimony is fairly convincing evidence for the 
prosecution’s claim that Student C cheated by copying from 
Student A’s paper. 

(SOURCE: PHILLIP J. BOLAND AND MICHAEL PROSCHAN, 
“THE USE OF STATISTICAL EVIDENCE IN ALLEGATIONS OF 
EXAM CHEATING,” CHANCE 3(3):10-14, 1991.) 

What’s the Main Point? 

Statistical inference always involves an argument based on 
probability. 

In this court case, the prosecution used two different types of 
arguments to provide evidence of cheating. The first argument is an 
example of statistical inference because it is based on probability. 
We set up a simulation to reflect an assumption that the prosecutor 
made. The assumption is that answer sets come from random 
guessing. We simulated over a thousand answer sets with randomly 
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chosen answers to investigate the long-run behavior of simulated 
answer sets. We then compared Student C to the distribution of 
randomly generated answer sets. Student C was unusual. We 
concluded that Student C was not randomly guessing. 

The second argument is an example of exploratory data analysis 
with no statistical inference. The prosecutor designed a 
measurement and collected data from every student in the class. 
He compared Student C’s measurement to the measurements of 
the other students. Probability did not have a role in this analysis. 
Probability statements require a random event and a look at long-
run behavior of random events, so this is not an example of 
statistical inference. 

LEARN BY DOING 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=138 
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LEARN BY DOING 

An interactive or media element has been 

excluded from this version of the text. You can 
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The court case illustrates how we can view statistical inference 

as an argument based on probability. Here we briefly connect the 
probability argument with the vocabulary and ideas from the 
module Probability and Probability Distribution. 

Recall the following important points about probability that we 
learned in that module: 

• Probability is a measure of how likely an event is to occur. 
• We can make probability statements only about random 

events. Random here means that the outcome is uncertain in 
the short run but has a predictable pattern in the long run. 

How does the logic of the probability argument in the court case relate 
to Probability and Probability Distribution? 

To understand the probability argument in the original court 
case, we used a computer simulation to analyze the long-run 
pattern that emerges if students randomly guess on multiple-choice 
questions. Our variable was Proportion of matches with Student A’s 
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wrong answers on 16 questions. We graphed the distribution of a 
large number of proportions from the random answer sets to see 
the pattern. Using the vocabulary of Probability and Probability 
Distribution, the proportion of matches is a random variable. In the 
short run, we do not know the proportion of matches that will occur 
in a random answer set, but in the long run, we see a pattern in the 
distribution of these proportions. This distribution of proportions 
is treated as a probability model. From it we can see how much 
variability to expect in matches from random answer sets. We can 
also identify unusual values. From the pattern in this distribution, 
we can say it is very unlikely that Student C guessed. 

How does this logic relate to the Big Picture? 
This logic is similar to the logic of inference that we explore 

in future modules, where we randomly select samples from a 
population. We continue to use computer simulation throughout 
these modules to analyze the long-run pattern that emerges in 
measurements from random samples. We create probability models 
that tell us how much variability to expect in random samples. We 
also use these models to identify unusual measurements. From the 
patterns, we use data to make judgments about the population. 
In this way, our conclusions about a population are based on 
probability. 

Probability and Probability Distribution included a long discussion 
of probability models that are normal curves. Under certain 
conditions, the long-run behavior of measurements from random 
samples can be modeled with a normal curve (or a similar curve), 
we see in this module and in Inference for One Proportion, Inference 
for Two Proportions, and Inference for Means. In each module, we 
ask the question, When can we use a normal model? Once we know 
these conditions, we can use what we learned in the previous 
module to make probability-based decisions about population 
values. 

Here we add these ideas to the Big Picture to show how 
probability connects to inference. 
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Note that we highlighted two types of inference in the diagram: 

• Estimate a population value. 
• Test a claim about the population value. 

We end our introduction to inference with a look at research 
questions that illustrate these two types of inference. We also 
connect these examples to the types of inference we learn about in 
upcoming modules. 
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Research Questions That Involve Inference 

Type of 
Question Examples Variable 

Type Unit 

Make an 
estimate 
about the 
population 

What proportion of all U.S. 
adults support the death 
penalty? 

Categorical 
variable 

Inference 
for One 
Proportion 

What is the average number 
of hours that community 
college students work each 
week? 

Quantitative 
variable 

Inference 
for Means 

Test a claim 
about the 
population 

Do the majority of community 
college students qualify for 
federal student loans? 

Categorical 
variable 

Inference 
for One 
Proportion 

Has the average birth weight 
in a town decreased from 
3,500 grams? 

Quantitative 
variable 

Inference 
for Means 

Compare 
two 
populations 

Are teenage girls more likely 
to suffer from depression 
than teenage boys? 

Categorical 
variable 

Inference 
for Two 
Proportions 

In community colleges do 
female students have a higher 
average GPA than male 
students? 

Quantitative 
variable 

Inference 
for Means 

Note: Each research question relates to either a categorical variable 
or a quantitative variable. In this course, three criteria determine 
the inference procedure we use: 

• The type of variable. 
• The type of inference (estimate a population value or test a 

claim about a population value). 
• The number of populations involved. 
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LEARN BY DOING 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=138 
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117. Introduction: 
Distribution of Sample 
Proportions 

What you’ll learn to do: Describe the sampling 
distribution for sample proportions and use it to 
identify unusual (and more common) sample 
results. 

LEARNING OBJECTIVES 

• Describe the sampling distribution for sample 
proportions and use it to identify unusual (and more 
common) sample results. 

• Distinguish between a sample statistic and a 
population parameter. 

• Use a z-score and the standard normal model to 
estimate probabilities of specified events. 
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118. Parameters vs. Statistics 

 

Learning Objectives 

• Describe the sampling distribution for sample 
proportions and use it to identify unusual (and more 
common) sample results. 

• Distinguish between a sample statistic and a 
population parameter. 

One of the goals of inference is to draw a conclusion about a 
population on the basis of a random sample from the population. 
Obviously, random samples vary, so we need to understand how 
much they vary and how they relate to the population. Our ultimate 
goal is to create a probability model that describes the long-run 
behavior of sample measurements. We use this model to make 
inferences about the population. 

We begin our investigation with a simplified and artificial 
situation. 
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Example 

Proportions from Random Samples Vary 

Imagine a small college with only 200 students, and 
suppose that 60% of these students are eligible for financial 
aid. 

In this simplified situation, we can identify the 
population, the variable, and the population proportion. 

• Population: 200 students at the college. 
• Variable: Eligibility for financial aid is a categorical 

variable, so we use a proportion as a summary. 
• Population proportion: 0.60 of the population is 

eligible for financial aid. 

Note: Populations are usually much larger than 200 
people. Also, in real situations, we do not know the 
population proportion. We are using a simplified situation 
to investigate how random samples relate to the 
population. This is the first step in creating a probability 
model that will be useful in inference. 

How accurate are random samples at predicting this 
population proportion of 0.60? 

To answer this question, we randomly select 8 students 
and determine the proportion who are eligible for financial 
aid. We repeat this process several times. Here are the 
results for 3 random samples: 
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Notice the following about these random samples: 

• Each random sample came from a population in 
which the proportion eligible for financial aid is 0.60, 
but sample proportions vary. Each random sample 
has a different proportion who are eligible for 
financial aid. 

• Some sample proportions are larger than the 
population proportion of 0.60; some sample 
proportions are smaller than the population 
proportion. 

• Some samples give good estimates of the 
population proportion. Some do not. In this case, 
0.625 is a much better estimate than 0.375. 

• A lot of variability occurs in these sample 
proportions. It is not surprising, therefore, that a 
sample of 8 students may give an inaccurate estimate 
for the proportion of those eligible for financial aid in 
the population. It makes sense that small samples of 

618  |  Parameters vs. Statistics



only 8 students may not represent the population 
accurately. Later we investigate the effect of 
increasing the size of the sample. 

• The variability we see in proportions from random 
samples is due to chance. 

Learn By Doing 

In these activites, we use the following simulation to 
select a random sample of 8 students from the small college 
in the previous example. At the college, 60% of the students 
are eligible for financial aid. For each sample, the 
simulation calculates the proportion in the sample who are 
eligible for financial aid. Repeat the sampling process many 
times to observe how the sample proportions vary, then 
answer the questions. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=140 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=140 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=140 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=140 
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Example 

Means from Random Samples Vary 

Now let’s consider a quantitative variable with this same 
population of 200 students at a small college. Let’s also 
suppose that the mean amount of financial aid received by 
students at the college is $1,500. 

In this simplified situation, we have 

• Population: 200 students at the college. 
• Variable: Financial aid amount ($) is a quantitative 

variable, so we use a mean as a summary. 
• Population mean: $1,500. 

How accurate are random samples at predicting this 
population mean of $1,500? 

To answer this question, we randomly select 8 students 
and determine the mean amount of financial aid received 
by the students. We repeat this process several times. Here 
are the results for 3 random samples: 
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Notice that observations we made earlier about sample 
proportions are true for sample means. 

• Each random sample came from a population for 
which the mean amount of financial aid received by 
individual students is $1,500. But the sample means 
vary: Each random sample has a different mean. 

• Some sample means are larger than the population 
mean of $1,500. Some sample means are smaller than 
the population mean. 

• Some samples give better estimates of the 
population mean than others. For example, $1,325.00 
is a much better estimate than $687.50. 

• A lot of variability occurs in the sample means. It is 
not surprising, therefore, that a sample of 8 students 
may give an inaccurate estimate of the mean amount 
of financial aid received by the population. Again, it 
makes sense that small samples of only 8 students 
may not represent the population accurately. We 
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investigate the factors that affect the variability of 
means from random samples in the module Inference 
for Means. 

• The variability we see in the means from random 
samples is due to chance. 

Definitions 

Before we continue our discussion of sampling variability, we 
introduce some vocabulary. 

A parameter is a number that describes a population. A statistic
is a number that we calculate from a sample. 

Let’s use this new vocabulary to rephrase what we already know 
at this point: 

• When we do inference, the parameter is not known because it 
is impossible or impractical to gather data from everyone in 
the population. (Note: In each example on this page, we 
assumed we knew the parameter so that we could investigate 
how statistics relate to the parameter. This is the first step in 
creating a probability model. However, when we do inference, 
we use a statistic to draw a conclusion about an unknown 
parameter.) 

• We make an inference about the population parameter on the 
basis of a sample statistic. 

• Statistics from samples vary. 

In this course, if the variable is categorical, the parameter and the 
statistic are both proportions. If the variable is quantitative, the 
parameter and statistic are both means. 
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From our first example: 

• Parameter: A population proportion. For this population of 
students at a small college, 0.60 are eligible for financial aid. 

• Statistics: Sample proportions that vary. In the example, 0.75, 
0.625, and 0.375 are all statistics that describe the proportion 
eligible for financial aid in a sample of 8 students. 

From our second example: 

• Parameter: A population mean. For this population of students 
at a small college, the mean amount of financial aid is $1,500. 

• Statistics: Sample means that vary. In the example, $2,087.50, 
$1,325.00, and $687.50 are all statistics that describe the mean 
amount of financial aid received by a sample of 8 students. 

We use different notation for parameters and statistics: 

(Population) Parameter (Sample) Statistic 

Proportion 

Mean 

Standard Deviation 

Sometimes we refer to the sample statistics as “p-hat” and “x-bar.” 
Here we use this notation for the information from our examples. 
For our first example: 

• For the population of college students, p = 0.60. 
• For the 3 random samples of 8 students, we have p-hats 

For our second example: 

• For the population of college students, µ = $1,500. 

624  |  Parameters vs. Statistics



• For the 3 random samples of 8 students, we have x-bars 

Important Comments about Notation 
Many statistics packages and introductory statistics textbooks 

use the notation shown in the table. The notation for means and 
standard deviations is common in the field of statistics. However, 
you will occasionally see other notation for proportions. In some 
statistical material, the Greek letter π represents the population 
proportion and p represents the sample proportion. This can be 
particularly confusing because p is used in some statistical material 
for the population proportion and in other statistical material for 
a sample proportion. Whenever you work with symbols, always be 
sure you understand what the symbol represents. You should be 
able to interpret the symbol from the context of the material. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=140 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=140 
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119. Distribution of Sample 
Proportions (1 of 6) 

 

Learning Objectives 

• Describe the sampling distribution for sample 
proportions and use it to identify unusual (and more 
common) sample results. 

Introduction 
In this module, Linking Probability to Statistical Inference, we 

work with categorical variables, so the statistics and the parameters 
will be proportions. In the module Inference for Means, we work 
with quantitative variables, so the statistics and parameters will 
be means. In the Big Picture, we see that inference is based on 
probability. In this module, we begin the process of developing a 
probability model to describe the long-run behavior of proportions 
from random samples. 

After we develop a probability model of how sample proportions 
behave, we can answer questions like the following: 

• Do the majority of college students qualify for federal student 
loans? 

• What proportion of all college students in the United States are 
enrolled at a community college? 

The questions ask us to make an inference about a population. Our 
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answers to these questions will be based on a sample. We will never 
be 100% sure of our answer, so we will make probability statements 
that describe the strength of the evidence and our certainty. 

Brief Discussion of the Connection between These Questions 
and Probability 

Do the majority of college students qualify for federal student loans? 

• This question asks us to test a claim about college students. 
The claim is “the majority of college students qualify for federal 
student loans.” To test this claim, suppose we select a large 
random sample of college students and find that 40% of the 
sample qualify for these loans. A majority requires over 50%; 
40% is definitely not a majority. Can we conclude from this 
sample that our claim is incorrect? Or could this sample have 
come from a population the majority of which qualify for 
loans? What is the probability that sample proportions will be 
0.40 or less if the majority in the population qualify? 

What proportion of all college students in the United States are 
enrolled at a community college? 

• This question asks us to estimate a population proportion. 
Suppose we select a large random sample of college students 
and find that 46% are enrolled at a community college. What is 
the probability that an estimate from a sample is within 3% of 
the population proportion? 

Note: Connected to each inference question about a population 
proportion, we see a probability question about the long-run 
behavior of sample proportions. We need to understand how 
proportions from random samples relate to the population 
proportion. We also need to understand how much variability we 
can expect in sample proportions. Therefore, in our early 
investigations, we will assume we know a population proportion and 
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examine what happens when we select random samples from this 
population. 

Now we begin an investigation of the long-run behavior of sample 
proportions. 

Example 

Gender in the Population of Part-time 
College Students 

According to a 2010 report from the American Council on 
Education, females make up 57% of the U.S. college 
population. With the rising costs of education and a poor 
economy, many students are working more and attending 
college part time. We anticipate that if we look at the 
population of part-time college students, a larger 
percentage will be female. Let’s say we predict that 60% of 
part-time college students are female. 

We don’t have information about the population of part-
time college students, so we select a random sample of 25 
part-time college students and calculate the proportion of 
the sample that is female. We don’t expect the sample 
proportion to be exactly 0.60. So, how much could the 
sample proportion vary from 0.60 for us to feel confident in 
our prediction? 

To answer this question, we need to understand how 
much sample proportions will vary if the parameter is 0.60. 
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Learn By Doing 

Refer to the previous example for the following 
questions. These questions focus on how the proportion of 
females will vary in random samples if we assume that 0.60 
of the population of part-time college students is female. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=141 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=141 

Use the following simulation to select a random sample of 25 part-
time college students. Repeat the selection many times to observe 
how the proportion of females in the samples vary. Then answer the 
following question. 
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An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=141 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=141 
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120. Distribution of Sample 
Proportions (2 of 6) 

 

Learning Objectives 

• Describe the sampling distribution for sample 
proportions and use it to identify unusual (and more 
common) sample results. 

Recall that our goal is to create a probability model that describes 
the long-run behavior of proportions from random samples. 
Previously, we used a simulation to collect a few random samples 
to get acquainted with making a distribution of sample proportions. 
We randomly selected 25 students at a time from a population of 
part-time college students that is 60% female. In the next example, 
we predict what happens in the long run when we select many, 
many random samples of 25 students at a time from this population. 
Then we watch a simulation to see if our predictions are correct. 
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Example 

Predicting the Behavior of Sample 
Proportions 

Based on our intuition and what we observed with the 
simulation, we might expect the following about the 
distribution of sample proportions that come from a 
population where p = 0.60: 

Center: Some sample proportions will be on the low side 
– such as 0.52 or 0.56 – and others will be on the high side 
– such as 0.64 or 0.68. It is reasonable to expect all the 
sample proportions in repeated random samples to average 
out to the underlying population proportion, 0.6. In other 
words, the mean of the distribution of sample proportions 
should be p. 

Spread: For samples of 25, we expect sample proportions 
of females not to stray too far from the population 
proportion 0.6. Sample proportions lower than 0.44 or 
higher than 0.72 will be unusual. Previously, we took smaller 
random samples of 8 and observed more variability in the 
sample proportions. We therefore think that sample size 
plays a role in the spread of the distribution of sample 
proportions. Smaller samples may be less accurate and 
more variable than larger samples. 

Shape: Sample proportions closest to 0.6 will be most 
common, and sample proportions far from 0.6 in either 
direction will be progressively less likely. In other words, 
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the shape of the distribution of sample proportions may be 
somewhat bell-shaped. 

Now we use a simulation to collect numerous samples to see what 
happens in the long run. We use the simulation to check whether 
our intuition about the center, spread, and shape of the distribution 
of sample proportions is right. 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=142 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=142 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=142 

At this point, we have a good sense of what happens as we take 
random samples from a population. Our simulation suggests that 
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our initial intuition about the shape and center of the distribution of 
sample proportions is correct. 

Now we use another simulation to help us think more precisely 
about the variability we expect to see in the sample proportions. 
Our intuition tells us that larger samples will better approximate 
the population, so we might expect less variability in large samples. 
In the next walk-through, we use a simulation to investigate this 
idea. After that walk-through, we tie these ideas to more formal 
theory about the probability model for the long-run behavior of 
proportions from random samples. 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=142 

We are now ready to use what we have observed to develop a formal 
probability model to describe the behavior of sample proportions. 

636  |  Distribution of Sample Proportions (2 of 6)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=142#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=142#pb-interactive-content


First, let’s return to the original question that prompted our 
investigation of sample proportions. 

We based our investigation on the prediction that 60% of part-
time college students will be female. In our investigation, we asked, 
How much could the sample proportion vary from a population 
proportion of 0.60 for us to feel confident in our prediction? 

We don’t expect a sample proportion to be exactly equal to the 
population proportion. But how much error seems reasonable? 

We now see that the answer to this question depends on the size 
of the sample. 

• If we select a random sample of 25 students, the distribution of 
sample proportions has a standard deviation of about 0.1. We 
can see that most sample proportions fall within 2 standard 
deviations of 0.60. Therefore, we might decide that 2 × 0.10 = 
0.20 is a reasonable margin of error, so a sample proportion 
between 0.40 and 0.80 is not surprising if 0.60 of all part-time 
college students are female. 

• If we select a random sample of 100 students, the distribution 
of sample proportions has less variability. It has a standard 
deviation of about 0.05. Again we see that most sample 
proportions fall within 2 standard deviations of 0.60, so we 
might decide that 2 × 0.05 = 0.10 is a reasonable amount of 
error for these larger samples. For a sample of 100 students, 
then, a sample proportion between 0.50 and 0.70 is not 
surprising if 0.60 of all part-time college students are female. 

We discuss this idea further in “Introduction to Statistical Inference” 
in this unit. 
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121. Distribution of Sample 
Proportions (3 of 6) 

 

Learning Objectives 

• Describe the sampling distribution for sample 
proportions and use it to identify unusual (and more 
common) sample results. 

Now we practice using a simulation to examine how sample 
proportions relate to a population proportion and to identify 
unusual sample values. The type of thinking we do here prepares us 
for the type of thinking we will do in statistical inference. 

Example 

Community College Enrollment 

According to a report by the Pew Research Center, in 
October 2007 about 10% of the 3.1 million 18- to 24-year-
olds in the United States were enrolled in a community 
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college. Suppose in that year we randomly selected 100 
young adults in this age group. Suppose 15% of the sample 
was enrolled in a community college. Is this surprising? 
Well, the sample proportion is off by only 5%. But how 
much error do we expect to see in random samples of this 
size? We do a simulation to find out. 

Simulation: 

First, we make an assumption about the population 
proportion. We set p = 0.10 in the simulation. (If you would 
like to work through the example using the simulation, click 
here). We also set n=100 to represent the sample size of 
100. When we hit the “Run simulation (5,000 samples)” 
button, the simulation simulates the random selection of 
5,000 samples. Each sample has 100 young adults from this 
population. For each sample, the simulation plots the 
proportion who are enrolled at a community college. Here 
is a histogram of the results. 
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Analysis: 

When p=0.10 and n=100, a sample proportion of 0.15 is 
too far away from 0.10 to be considered a typical sample 
result. It is not part of the central peak of the histogram of 
sample proportions, but it is also not in the small part of 
the histogram’s tail. Therefore, this result is somewhat 
unusual, but not extremely unusual. In other words, the 5% 
error in this sample is larger than the error we see in most 
samples, but there are samples with larger amounts of 
error. 
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Conclusion: 

For random samples of 100 young adults, a sample with 
15% enrolled in a community college is unusual if only 10% 
of the population overall is enrolled. 

Example 

Another Look at Community College 
Enrollment 

Here we think about a more precise way to analyze the 
results of our simulation. (If you would like to work through 
the example using the simulation, click here). We use the 
standard deviation of the distribution of sample 
proportions to describe the amount of error we expect to 
see in random samples. We use the simulation again and 
check “Show standard deviation bar.” 
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The mean of the sample proportions is p=0.10. The 
standard deviation of the sample proportions is 0.03. The 
standard deviation describes the average amount of error 
in sample proportions that is due to chance. On average, 
sample proportions will have a 3% error. A sample 
proportion of 0.15 has a 5% error, so this is a larger error 
than we expect on average. 

Here is another way to look at it. Typical samples have 
sample proportions within 1 standard deviation of 0.10, 
which is between 0.07 and 0.13 ( just subtract 0.03 from 0.10 
and then add 0.03 to 0.10). We can also see that most 
sample proportions fall within about 2 standard deviations 
of 0.10, which is between 0.04 and 0.16. So it is extremely 
unusual for sample proportions to have values outside of 
this range. 

Therefore, a sample proportion of 0.15 is not typical, but 
it is also not extremely unusual, when sampling from a 
population with p=0.10. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=143 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=143 
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122. Distribution of Sample 
Proportions (4 of 6) 

 

Learning Objectives 

• Describe the sampling distribution for sample 
proportions and use it to identify unusual (and more 
common) sample results. 

The simulations on the previous page reinforce what we have 
observed about patterns in random sampling. 

• Proportions from random samples approximate the population 
proportion, p, so sample proportions average out to the 
population proportion. 

• Larger random samples better approximate the population 
proportion, so large samples have sample proportions closer to 
p. In other words, a sampling distribution for large samples has 
less variability. 

• The distribution of sample proportions appears normal (at 
least for the examples we have investigated). 

We can describe the sampling distribution with a mathematical 
model that has these same features. 
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The Sampling Distribution of Sample Proportions 

For a categorical variable, imagine a population with a proportion 
p of successes. (For example, for the variable gender, imagine a 
population of part-time college students with p = 0.60 female. Note 
that a success is the category of interest. It is what we are counting. 
Here a success is a female.) We create a mathematical model that 
describes the sample proportions from all possible random samples 
of size n from this population. The model has the following center, 
spread, and shape. 

Center: Mean of the sample proportions is p, the population 
proportion. 

Spread: Standard deviation of the sample proportions is 

. The standard deviation of the sampling 

distribution is also called the standard error. 
Shape: A normal model is a good fit if the expected number 

of successes and failures is at least 10. We can translate these 
conditions into formulas: 

Comment 

The distribution of sample proportions for ALL samples of the same 
size is called the sampling distribution of sample proportions. 

In a simulation, we collect thousands of random samples to 
examine the distribution of sample proportions. But when we model 
this distribution, our model describes the sampling distribution that 
comes from ALL possible random samples of the same size. 
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Example 

Applying the Model for the Sampling 
Distribution 

Let’s apply this model to our previous example about the 
population of part-time college students to see how it 
compares to our simulation. Recall that we assumed the 
population of part-time college students is 60% female. We 
selected samples of 25 part-time college students and 
calculated the proportion of females in each sample. 

 

Compare the mean and standard deviation we observed 
in the simulation to the mathematical model. Notice that 
the conditions are met, so a normal model is a good fit. We 
see that the model is a good description of the center, 
spread, and shape we observed in the simulation. 
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Learn By Doing 

According to the National Postsecondary Student Aid 
Study conducted by the U.S. Department of Education in 
2008, 62% of graduates from public universities had 
student loans. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=144 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=144 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=144 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=144 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=144 
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123. Distribution of Sample 
Proportions (5 of 6) 

 

Learning Objectives 

• Use a z-score and the standard normal model to 
estimate probabilities of specified events. 

From our work on the previous page, we now have a mathematical 
model of the sampling distribution of sample proportions. This 
model describes how much variability we can expect in random 
samples from a population with a given parameter. If a normal 
model is a good fit for a sampling distribution, we can apply the 
empirical rule and use z-scores to determine probabilities. Here we 
link probability to the kind of thinking we do in inference. 

Making Connections to Probability Models in 
Probability and Probability Distribution 

Probability describes the chance that a random event occurs. Recall 
the concept of a random variable from the module Probability and 
Probability Distribution. When a variable is random, it varies 
unpredictably in the short run but has a predictable pattern in the 
long run. Sample proportions from random samples are a random 
variable. We cannot predict the proportion for any one random 
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sample; they vary. But we can predict the pattern that occurs when 
we select a great many random samples from a population. The 
sampling distribution describes this pattern. When a normal model 
is a good fit for the sampling distribution, we can use what we 
learned in the previous module to find probabilities. 

Recall probability models we saw in Probability and Probability 
Distribution. We saw examples of models with skewed curves, but 
we focused on normal curves because we use normal probability 
models to describe sampling distributions in Modules 7 to 10 when 
we make inferences about a population. As we now know, we can 
use a normal model only when certain conditions are met. 
Whenever we want to use a normal model, we must check the 
conditions to make sure a normal model is a good fit. 

Here we summarize our general process for developing a 
probability model for inference. This is essentially the same process 
we used in the previous module for developing normal probability 
models from relative frequencies. 
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If a normal model is a good fit for the sampling distribution, we 
can standardize the values by calculating a z-score. Then we can 
use the standard normal model to find probabilities, as we did in 
Probability and Probability Distribution. 

The z-score is the error in the statistic divided by the standard 
error. For sample proportions, we have the following formulas. 

We can also write this as one formula: 
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Comment 

This z-score formula is similar to the z-score formula we used in 
Probability and Probability Distribution. We described the z-score as 
the number of standard deviations a data value is from the mean. 
Here we can describe the z-score as the number of standard errors 
a sample proportion is from the mean. Because the mean is the 
parameter value, we can say that the z-score is the number of 
standard errors a sample proportion is from the parameter. 

A positive z-score indicates that the sample proportion is larger 
than the parameter. A negative z-score indicates that the sample 
proportion is smaller than the parameter. 

Example 

Probability Calculations for Community 
College Enrollment 

Let’s return to the example of community college 
enrollment. Recall that a 2007 report by the Pew Research 
Center stated that about 10% of the 3.1 million 18- to 
24-year-olds in the United States were enrolled in a 
community college. Let’s again suppose we randomly 
selected 100 young adults in this age group and found that 
15% of the sample was enrolled in a community college. 

Previously, we determined that 15% is a surprising result. 
Now we want to be more precise. We ask this question: 
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What is the probability that a random sample of this size has 
15% or more enrolled in a community college? 

To answer this question, we first determine if a normal 
model is a good fit for the sampling distribution. 

Check normality conditions: 

Yes, the conditions are met. The number of expected 
successes and failures in a sample of 100 are at least 10. We 
expect 10% of the 100 to be enrolled in a community 
college, . We expect 90% of 

the 100 to not be enrolled, 
. 

We therefore can use a normal model, which allows us to 
use a z-score to find the probability. 

Find the z-score: 

Find the probability using the standard normal model: 

We want the probability that the sample proportion is 
15% or more. So we want the probability that the z-score is 
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greater than or equal to 1.67. The probability is about 
0.0475. 

Conclusion: If it is true that 10% of the population of 18- 
to 24-year-olds are enrolled at a community college, then it 
is unusual to see a random sample of 100 with 15% or more 
enrolled. The probability is about 0.0475. 

Note: This probability is a conditional probability. Recall 
from Relationships in Categorical Data with Intro to 
Probability that we write a conditional probability P(A given 
B) as P(A | B). Here we write P(a sample proportion is 0.15 
given that the population proportion is 0.10) as 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=145 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=145 
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124. Distribution of Sample 
Proportions (6 of 6) 

 

Learning Objectives 

• Use a z-score and the standard normal model to 
estimate probabilities of specified events. 

Example 

Probability Calculations: Overweight Men 

Recall the use of data from the Centers for Disease 
Control and Prevention’s (CDC) National Health Interview 
Survey to estimate behaviors such as alcohol consumption, 
cigarette smoking, and hours of sleep for adults in the 
United States. In the 2005–2007 report, the CDC estimated 
that 68% of men in the United States are overweight. 
Suppose we select a random sample of 40 men and find 
that only 58% are overweight. If 68% of U.S. men are 
overweight, this sample percentage is off by 10%. Is this 
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much error surprising? What is the probability that a 
sample proportion will over- or underestimate the 
parameter by more than 10%? 

Check normality conditions: 

Yes, the conditions are met. The number of expected 
successes and failures in a sample of 40 are at least 10. We 
expect 68% of the 40 to be overweight; 

is about 27. We expect 32% of the 40 to not be overweight; 
 is about 13. 

So we can use a normal model. This allows us to use a 
z-score to find the probability. 

Find the z-score: 

We want the error to be more than 10% in either 
direction, so the sample proportion could be less than 0.58 
or greater than 0.78. It does not matter which sample 
proportion we use to find the z-score because of the 
symmetry in the distribution. We arbitrarily chose 0.58. We 
could also have used 0.78. 

Find the probability using the standard normal model: 
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We want the probability described by the two tails. The 
probability for one tail is 0.0885, or about 0.09. So the 
probability for both tails is about 2 x 0.09 = 0.18. 

Conclusion: 

If it is true that 68% of U.S. men are overweight, then 
there is about an 18% chance that the percentage of 
overweight men in a random sample of 40 men is off by 
more than 10%. In other words, there is about an 18% 
chance that sample proportions will fall below 0.58 or 
above 0.78 if the true population proportion is 0.68. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=146 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=146 

 

Let’s Summarize 

• Inference is based on probability. 

• A parameter is a number that describes a population. A 
statistic is a number that describes a sample. In inference, we 
use a statistic to draw a conclusion about a parameter. These 
conclusions include a probability statement that describes the 
strength of the evidence or our certainty. 

• For a categorical variable, the parameter and the statistics are 
proportions. For a quantitative variable, the parameter and 
statistics are means. 

• For a given situation, we assume that the parameter is fixed. It 
does not change. However, statistics always vary. When we 
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take random samples, the fluctuation in statistics is due to 
chance. 

• Larger samples have less variability. 

• For a categorical variable, we assume that the population has a 
proportion p of successes. When we select random samples 
from this population, the sample proportions have a pattern in 
the long run. We can describe this pattern with a mathematical 
model of the sampling distribution. The model has the 
following center, spread, and shape. 

◦ Center: Mean of the sample proportions is p, the 
population proportion. 

◦ Spread: Standard deviation of the sample proportions is 

◦ Shape: A normal model is a good fit if the expected 
number of successes and failures is at least 10. We can 
translate these conditions into formulas: 

• When a normal model is a good fit for the sampling 
distribution, we can calculate a z-score. It allows us to use the 
standard normal model to find probabilities associated with 
the sampling distribution. 

We can also write this as one formula: 
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125. Introduction: Statistical 
Inference 

What you’ll learn to do: Find a confidence 
interval to estimate a population proportion and 
test a hypothesis about a population proportion 
using a simulated sampling distribution or a 
normal model of the sampling distribution. 

LEARNING OBJECTIVES 

• Find a confidence interval to estimate a population 
proportion when conditions are met. Interpret the 
confidence interval in context. 

• Test a hypothesis about a population proportion 
using a simulated sampling distribution or a normal 
model of the sampling distribution. State a conclusion 
in context. 

662  |  Introduction: Statistical
Inference



126. Statistical Inference (1 of 
3) 

 

Learning Objectives 

• Find a confidence interval to estimate a population 
proportion when conditions are met. Interpret the 
confidence interval in context. 

From the Big Picture of Statistics, we know that our goal in 
statistical inference is to infer from the sample data some 
conclusion about the wider population the sample represents. In the 
first section, “Distribution of Sample Proportions,” we investigated 
the obvious fact that random samples vary. Because different 
samples may lead to different conclusions, we cannot be certain 
that our conclusions are correct. Statistical inference uses the 
language of probability to say how trustworthy our conclusions are. 

We learn two types of inference: confidence intervals and 
hypothesis tests. We construct a confidence interval when our goal 
is to estimate a population parameter (or a difference between 
population parameters). We conduct a hypothesis test when our 
goal is to test a claim about a population parameter (or a difference 
between population parameters). Both types of inference are based 
on the sampling distribution of sample statistics. For both, we 
report probabilities that state what would happen if we used the 
inference method repeatedly. 

In this section, we build on the ideas in “Distribution of Sample 
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Proportions” to reason as we do in inference, but we do not do 
formal inference procedures now. Instead, we focus on the logic of 
inference. We use categorical data and proportions to investigate 
the logic of inference. But all of the ideas we discuss here apply to 
quantitative variables and means. 

Confidence Intervals 

When our goal is to estimate a population proportion, we select a 
random sample from the population and use the sample proportion 
as an estimate. Of course, random samples vary, so we want to 
include a statement about the amount of error that may be present. 
Because sample proportions vary in a predictable way, we can also 
make a probability statement about how confident we are in the 
process we used to estimate the population proportion. 

We can find many examples of confidence intervals reported in 
the media. Here is an example. 

Example 

Do You Have Problems Sleeping? 

664  |  Statistical Inference (1 of 3)



 
The National Sleep Foundation sponsors an annual poll. 

In 2011, the poll found that “43% of Americans between the 
ages of 13 and 64 say they rarely or never get a good night’s 
sleep on weeknights. More than half (60%) say that they 
experience a sleep problem every night or almost every 
night (i.e., snoring, waking in the night, waking up too early, 
or feeling unrefreshed when they get up in the morning” (as 
reported at www.sleepfoundation.org). 

Are these percentages sample statistics or population 
parameters? These statistics describe the responses of a 
sample of Americans. 

Let’s focus on the 60% who say they experience a sleep 
problem every night or almost every night. Does this mean 
that 60% of all Americans have this same experience? Well, 
no. This is a sample statistic from a poll. But from this 
sample, we want to infer what percentage of the population 
does have sleep problems. Since the percentage with sleep 
problems will differ from one sample to the next, we need 
to make a statement about how much error we might 
expect between a sample percentage and the population 
percentage. 

In the “Poll Methodology and Definitions” section of the 
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article, we find more detailed information about the poll. 
According to the Sleep Foundation website, “The 2011 Sleep 
in America® annual poll was conducted for the National 
Sleep Foundation by WB&A Market Research, using a 
random sample of 1,508 adults between the ages of 13 and 
64. The margin of error is 2.5 percentage points at the 95% 
confidence level.” 

There is a lot of important information here: 

• The sample is random. 
• The sample size is 1,508. 
• The margin of error is 2.5%. 
• The confidence level is 95%. 

From this information, we can construct an interval that 
we are reasonably confident contains the population 
proportion. 

• Sample statistic ± margin of error 
• 60% ± 2.5% 
• 57.5% to 62.5% 

This interval is an example of a confidence interval. We 
interpret the interval this way: We are 95% confident that 
between 57.5% and 62.5% of all Americans experience a 
sleep problem every night or almost every night. 

How confident are we that this interval contains the 
population proportion? In this case, we are 95% confident. 
This means that 95% of the time, a random sample of this 
size will have at most 2.5% error. So 95% of these intervals 
will contain the true population proportion. Another way to 
say this is that this method accurately estimates the 
population proportion 95% of the time. 
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Note: Notice that the sample is a random sample. We can 
construct a confidence interval only with a random sample. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=148 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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Summary 

A sample proportion from a random sample provides a reasonable 
estimate of the population proportion. We do not expect the sample 
proportion to be exactly equal to the population proportion, but 
we expect the population proportion to be somewhat close to the 
sample proportion. The purpose of confidence intervals is to use the 
sample proportion to construct an interval of values that we can be 
reasonably confident contains the true population proportion. 

What Is the Connection to the Sampling 
Distribution? 

Sample proportions are estimates for the population proportion, 
so each sample proportion has error. For an individual sample, we 
will not know the exact amount of error, so we report a margin of 
error based on the standard error. Recall that the standard error 
is the standard deviation of sampling distribution. We can view 
the standard error as the typical or average error in the sample 
proportions. To see how this works, let’s return to a familiar 
sampling distribution. 
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Recall our previous investigation of gender in the population of 
part-time college students. We investigated these questions: What 
proportion of part-time college students are female? If we predict that 
the proportion is 0.60, how much error can we expect to be confident 
of in our prediction? 

We predicted the population proportion was 0.60 and ran a 
simulation to examine the variability in sample proportions for 
samples of 100 part-time college students. Here is the sampling 
distribution from the simulation. 

 

We see that we can be very confident that most samples of this size 
will have proportions that differ from 0.60 by at most 2 standard 
errors. For this simulation, the standard error in sample proportions 
was about 0.049. About 95% of the samples have an error less than 
2(0.049) = 0.098 
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If we use two standard errors as the margin of error, we can 
rewrite the confidence interval. 

• sample statistic ± margin of error 
• sample proportion ± 2(standard errors) 
• sample proportion ± 2(0.049) 
• sample proportion ± 0.098 

Different sample proportions give different intervals. For example, 
if the sample proportion is 0.57, the confidence interval is 0.472 to 
0.668. Here are our calculations. 

• sample proportion ± margin of error 
• 0.57 ± 2(0.049) 
• 0.57 ± 0.098 

The endpoints of the interval are 0.57 ‑ 0.098 = 0.472 and 
0.57 + 0.098 = 0.668. The confidence interval is 0.472 to 0.668. 

Since about 95% of the samples have at most 9.8% error, we have 
a 95% confidence interval. Based on this sample, we say we are 95% 
confident that the percentage of part-time college students who are 
female is between 47.2% and 66.8%. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=148 

 

Statistical Inference (1 of 3)  |  671

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=148#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=148#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=148#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=148#pb-interactive-content


127. Statistical Inference (2 of 
3) 

 

Learning Objectives 

• Find a confidence interval to estimate a population 
proportion when conditions are met. Interpret the 
confidence interval in context. 

• Interpret the confidence level associated with a 
confidence interval. 

A Look at 95% Confidence Intervals on the 
Number Line 

Let’s look again at the formula for a 95% confidence interval. 

The lower end of the confidence interval is sample proportion – 
2(standard error). 

The upper end of the confidence interval is sample proportion + 
2(standard error). 

Every confidence interval defines an interval on the number line 
that is centered at the sample proportion. For example, suppose a 
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sample of 100 part-time college students is 64% female. Here is the 
95% confidence interval built around this sample proportion of 0.64. 

 
We know the margin of error in a confidence interval comes 

from the standard error in the sampling distribution. For a 95% 
confidence interval, the margin of error is equal to 2 standard 
errors. This is shown in the following diagram. 

 
The width of the interval is the same as the width of the middle 

95% of the sampling distribution. The next diagram illustrates this 
relationship. 
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When Does a 95% Confidence Interval Contain 
the True Population Proportion? 

If the sample proportion has an error that is less than 2 standard 
errors, then the 95% confidence interval built around this sample 
proportion will contain the population proportion. 

The sample proportion 0.64 is within 2 standard errors of 0.60, so 
0.60 is in the 95% confidence interval built around 0.64. 
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In the following figure, the sample proportion 0.72 is not within 2 

standard errors of 0.60, so 0.60 is not in the 95% confidence interval 
built around 0.72. 
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How Confident Are We That a 95% Confidence 
Interval Contains the Population Proportion? 

Following are three confidence intervals for estimating the 
proportion of part-time college students who are female. We are 
confident that most of these intervals will contain the population 
proportion, like the green intervals shown here. But some will not 
contain the population proportion, like the red interval shown here. 

 
Of course, we don’t know the population proportion (which is 

why we want to estimate it with a confidence interval!). In reality, 
we cannot determine if a specific confidence interval does or does 
not contain the population proportion; that’s why we state a level 
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of confidence. For these intervals, we are 95% confident that an 
interval contains the population proportion. In other words, 95% 
of random samples of this size will give confidence intervals that 
contain the population proportion. The sad news is that we never 
know if a particular interval does or does not contain the unknown 
population proportion. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=149 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=149 
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Connections to the Theoretical Sampling 
Distribution and Normal Model 

For inference procedures, we work from a mathematical model of 
the sampling distribution instead of simulations. But we always 
begin our discussion with a simulation to highlight the sampling 
process. Simulations also remind us that the sampling distribution 
is a probability model because the sampling process is random and 
we look at long-run patterns. 

Recall from “Distribution of Sample Proportions” our discussion 
of the mathematical model for the sampling distribution of sample 
proportions. For samples of size n, the model has the following 
center and spread, both of which are related to a population with a 
proportion p of successes. 

Center: Mean of the sample proportions is p, the population 
proportion. 

Spread: Standard deviation of the sample proportions (also called 

standard error) is . 

Shape: A normal model is a good fit for the sampling distribution 
if the expected number of successes and failures is at least 10. We 
can translate these conditions into formulas: 

If we can use a normal model for the sampling distribution, then 
the empirical rule applies. Recall the empirical rule from Probability 
and Probability Distributions, which tells us the percentage of values 
that fall 1, 2, and 3 standard deviations from the mean in a normal 
distribution. 

• 68% of the values fall within 1 standard deviation of the mean. 
• 95% of the values fall within 2 standard deviations of the mean. 
• 99.7% of the values fall within 3 standard deviations of the 

mean. 
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When we have a normal model for the sampling distribution, the 

mean of the sampling distribution is the population proportion. 
These ideas translate into the following statements: 

• 68% of the sample proportions fall within 1 standard error of 
the population proportion. 

• 95% of the sample proportions fall within 2 standard errors of 
the population proportion. 

• 99.7% of the sample proportions fall within 3 standard errors 
of the population proportion. 

Therefore, the empirical rule tells us that there is a 95% chance that 
sample proportions are within 2 standard errors of the population 
proportion. A margin of error equal to 2 standard errors, then, 
will produce an interval that contains the population proportion 
95% of the time. In other words, we will be right 95% of the time. 
Five percent of the time, the confidence interval will not contain 
the population proportion, and we will be wrong. We can make 
similar statements for the other confidence levels, but these are less 
common in practice. For now, we focus on the 95% confidence level. 

With the formula for the standard error, we can write a formula 
for the margin of error and for the 95% confidence interval: 
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Remember that we can make a statement about our confidence 
that this interval contains the population proportion only when a 
normal model is a good fit for the sampling distribution of sample 
proportions. 

Comment 

You may realize that the formula for the confidence interval is a 
bit odd, since our goal in calculating the confidence interval is to 
estimate the population proportion, p. Yet the formula requires that 
we know p. For now, we use an estimate for p from a previous study 
when calculating the confidence interval. This is not the usual way 
statisticians estimate the standard error, but it captures the main 
idea and allows us to practice finding and interpreting confidence 
intervals. Later, we explore a different way to estimate standard 
error that is commonly used in statistical practice. 

Example 

Overweight Men 

Recall the use of data from the National Health Interview 
Survey (conducted by the CDC) to estimate the prevalence 
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of certain behaviors such as alcohol consumption, cigarette 
smoking, and hours of sleep for adults in the United States. 
In the 2005–2007 report, the CDC estimated that 68% of 
men in the United States are overweight. Suppose we select 
a random sample of 40 men this year and find that 75% are 
overweight. Using the estimate from the survey that 68% of 
U.S. men are overweight, we calculate the 95% confidence 
interval and interpret the interval in context. 

Check normality conditions: 

Yes, the conditions are met. The number of expected 
successes and failures in a sample of 40 are at least 10. We 
expect 68% of the 40 men to be overweight; 

 is about 27. We expect 32% of the 40 

men to not be overweight;  is about 13. 

We can use a normal model to estimate that 95% of the 
time a confidence interval with a margin of error equal to 2 
standard errors will contain the proportion of overweight 
men in the United States this year. 

Calculate the standard error (estimated average amount 
of error): 

Find the 95% confidence interval: 
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Interpretation: 

We are 95% confident that between 60.2% and 89.8% of 
U.S. men are overweight this year. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=149 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

682  |  Statistical Inference (2 of 3)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=149#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=149#pb-interactive-content


view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=149 
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128. Statistical Inference (3 of 
3) 

 

Learning Objectives 

• Test a hypothesis about a population proportion 
using a simulated sampling distribution or a normal 
model of the sampling distribution. State a conclusion 
in context. 

Now we focus on the second type of inference: hypothesis testing 
and the logic behind it. 

In hypothesis testing, we make a claim about a parameter and test 
it. On this page, we make a claim about a population proportion 
and use a sample proportion from data to test our claim. This is 
very similar to the thinking we did with simulations in the previous 
module. 

Example 

Test a Claim about Health Insurance 
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Coverage 

With data from the 2010 National Health Interview 
Survey, the Centers for Disease Control and Prevention 
(CDC) estimates that 22% of U.S. adults (age 18–64) did not 
have health insurance in 2010. Is the percentage higher this 
year? In a hypothesis test, we translate the research 
question into a claim about the population. 

Claim: The percentage of U.S. adults (ages 18–64) who do 
not have health insurance is higher than 22% this year. 

To test the claim, we assume that the percentage is 22% 
this year. Then we gather a random sample from the 
population to test the claim. Suppose 25% of a random 
sample of 600 U.S. adults (age 18–64) do not have health 
insurance this year. What can we conclude? Obviously, this 
sample has more than 22% uninsured adults. But does this 
data suggest the percentage of the U.S. adult population (age 
18–24) who are uninsured is greater than 22%? 

To test the claim, we begin with a population with 
 and take random samples of 600 people at a 

time. 

• If a sample proportion of 0.25 is likely to occur 
when sampling from a population with , 
then this sample could have come from a population 
with 22% uninsured. The evidence from the sample is 
not strong enough to conclude that the population 
percentage is greater than 22%. 
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• If a sample proportion is unlikely when sampling 
from a population with , then the sample 
provides evidence that the proportion of population 
who are uninsured is greater than 22%. 

Likely or unlikely? It depends on how much the sample 
proportions vary. We need to use a simulation or a 
mathematical model to represent the sampling distribution 
of sample proportions. 

Simulation: We used a simulation to select 2,000 random 
samples of 600 people, each from a population with 

. Judging from the simulation, a sample 
proportion of 0.25 is unlikely. Sample proportions of 0.25 or 
greater do not occur very often. In this simulation, only 90 
out of the 2,000 random samples (4.5%) had proportions of 
0.25 or greater. 

 

Normal Probability Model of the Sampling Distribution:
We can also apply what we know from our work with a 
normal model of the sampling distribution. Visually, the 
simulated sampling distribution looks like it has a normal 
shape. The formal conditions for use of a normal model 
require that the expected count of successes and failures 
are at least 10. Here we expect 22% (132 people) of the 600 
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people to be uninsured. We expect 78% (468 people) of the 
600 to be insured. Since the sampling distribution meets 
the conditions for use of a normal model, we can calculate 
the z-score and find the probability that a random sample 
has a proportion of 0.25 or greater. The z-score is 1.76, and 
our simulation gives a probability of 0.039. 

 

Both approaches suggest that a sample proportion of 0.25 
is unlikely. We don’t expect to see 25% or more uninsured 
in random samples of 600 very often. We estimate the 
chances as 4.5% with the simulation and only about 3.9% 
with the normal model. This is so unusual that we conclude 
the data from this year did not come from a population 
with only 22% uninsured. Our data provides strong 
evidence that more than 22% in the population are 
uninsured. 
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Example 

Test the Claim about Health Insurance 
Again with Different Data 

Now we retest the same claim using different data. 

Claim: The percentage of U.S. adults (ages 18–64) who do 
not have health insurance is higher than 22% this year. 

Suppose 26% of a random sample of 50 U.S. adults (age 
18–64) do not have health insurance this year. What can we 
conclude? 

Simulation: We again used a simulation to select 2,000 
random samples from a population with . This 
time there are 50 people in each sample. Judging from the 
simulation, a sample proportion of 0.26 is not unlikely. 
Sample proportions of 0.26 or greater occur frequently. In 
this simulation, 608 (30.4%) of the 2,000 random samples 
had proportions of 0.26 or greater. 

 

Normal Probability Model of the Sampling Distribution:
Visually, the simulated sampling distribution looks like it 
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has a normal shape. The formal conditions for use of a 
normal model require that the expected count of successes 
and failures is at least 10. Here we expect 22% (11 people) of 
the 50 people to be uninsured. We expect 78% (39 people) 
of the 50 to be insured. Since the sampling distribution 
meets the conditions for use of a normal model, we can 
calculate the z-score and find the probability that a random 
sample has a proportion of 0.26 or greater. The z-score is 
0.68, and our simulation gives a probability of 0.25. 

 

Both approaches suggest that a sample proportion of 
0.26 is not unlikely. It falls within a typical range of sample 
proportions that we expect to see from random samples of 
50 people. The z-score is 0.68, meaning the sample 
proportion is less than 1 standard error from 0.22. We also 
see the probability that a random sample has 26% or more 
uninsured is high: about 30% according to the simulation 
and about 25% according to the normal model. This 
probability suggests the data from this year could have 
come from a population with only 22% uninsured. Even 
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though 26% are uninsured in our sample, our data does not 
provide strong evidence that more than 22% of the 
population are uninsured this year. 

Comment 

How can a sample proportion of 0.25 be unusual in the first example 
but a sample proportion of 0.26 not be unusual in the second 
example? These two examples highlight an important point. We 
have to judge a sample result by looking at it in relation to other 
samples of the same size. In the first example, the samples are 
large (600 adults in each sample), so the sample proportions do not 
vary much. In this sampling distribution, a sample result of 0.25 or 
greater is unlikely to occur. In the second example, the samples are 
smaller (only 50 adults in each sample), so the sample proportions 
vary more. In this sampling distribution, a sample result of 0.26 or 
greater is likely to occur. 

Learn By Doing 

Has the Asthma Rate in Children 
Decreased? 

With data from the 2009 National Health Interview 
Survey, the Centers for Disease Control and Prevention 
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estimated that 9.4% of U.S. children had asthma. Is the 
percentage lower this year? 

Suppose we select a random sample of 50 children this 
year and find that 3 of the 50 have asthma. 

The conditions are not met for use of a normal model 
because the expected number with asthma (0.094 of 50) is 
less than 10, so we ran a simulation with p = 0.094. 

 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=150 

Is the Asthma Rate Higher for Children Living in 
Poverty? 

With data from the 2009 National Health Interview Survey, the 
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Centers for Disease Control and Prevention estimated that 9.4% 
of U.S. children had asthma. Is the percentage higher for children 
living in poverty? 

Suppose we select a random sample of 50 poor children and find 
that 9 of the 50 have asthma. 

The conditions are not met for use of a normal model, so we ran a 
simulation with . 

 

Learn By Doing 

Has the Percentage of Adults (18 and 
Older) Who Do Not Exercise Increased 
since 2007? 

With data from the 2009 National Health Interview 
Survey, the Centers for Disease Control and Prevention 
estimated that 33% of U.S. adults (18 and older) do not 
exercise. Is the percentage higher this year? 

Suppose we select a random sample of 100 adults (18 and 
older) this year. The conditions are met for use of a normal 
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model, because we expect 33 (33% of 100) in the sample will 
not exercise and 67 (67% of 100) will. Both expected counts 
are greater than 10. We use a z-score and a standard 
normal curve to assess the evidence. (The standard error is 
0.047.) 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=150 

Click here to open the simulation in its own window. 

Learn By Doing 

Has the Percentage of U.S. Adults Who 
Smoke Decreased since 2007? 

With data from the 2005–2007 National Health Interview 
Survey, the Centers for Disease Control and Prevention 
estimated that about 20% of U.S. adults (18 and older) 
smoke. Is the percentage lower this year? 
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Suppose we select a random sample of 100 adults (18 and 
older) this year. The conditions are met for use of a normal 
model, because we expect 20 smokers (20% of 100) in the 
sample and 80 nonsmokers. Both expected counts are 
greater than 10, so we use a z-score and a standard normal 
curve to assess the evidence. (The standard error is 0.04.) 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=150 

Click here to open the normal distribution calculator in 
its own window. 

Comment 

Are you wondering how extreme the results have to be before we 
conclude that the result is unusual? Well, it is a judgment call. 
No single cutoff point determines that a result is unusual. But in 
practice, we often agree on a cutoff point before we collect the 
data. In Inference for One Proportion, we discuss this idea further. 
However, if you are worried about this issue when taking a 
Checkpoint for this module, you can consider a result to be unusual 
if the probability is less than 5%. 
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Let’s Summarize 

Introduction to Statistical Inference 
The two types of inference procedures in this course are 

confidence intervals and hypothesis tests. The goal of a confidence 
interval is to estimate a parameter value. The goal of a hypothesis 
test is to test a claim about a parameter. Both types of inference 
are based on the sampling distribution of sample statistics. For both, 
we report probabilities that state what would happen if we used the 
inference method many times. 

Confidence Intervals 

The purpose of a confidence interval is to estimate a population 
parameter on the basis of a sample statistic. Sample statistics vary, 
so there is always error in our estimate, but we will never know how 
much. We therefore use the standard error, which is the average 
error in our sample estimates, to create a margin of error. The 
margin of error is related to our confidence that the interval 
contains the population parameter. 
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We investigated the 95% confidence interval for a population 

proportion in depth. When a normal model is a good fit for the 
sampling distribution, the 95% confidence interval has a margin of 
error equal to 2 standard errors. 

We say we are 95% confident that the calculated interval contains 
the population proportion, meaning that 95% of the time, these 
intervals will actually contain the population proportion, and we will 
be right. Five percent of the time, we will be wrong. We can never 
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tell if a confidence interval does or does not contain the population 
proportion we are trying to estimate. 

Hypothesis Tests 

The purpose of a hypothesis test is to use sample data to test a claim 
about a population parameter. We investigated testing a claim about 
a population proportion informally. 

We make a claim about a population proportion. From the claim, 
we state an assumption about the value of the population 
proportion. Could the data have come from this population? Or is 
the sample proportion too far off? It depends on how much random 
samples from this population vary. We construct a simulation or a 
normal model to represent the sampling distribution that occurs 
when sampling from a population with this assumed value. We make 
a judgment about whether the data is likely or unlikely to occur 
in the sampling distribution. If the data supports our claim and 
is unlikely, then we doubt our assumption about the population 
proportion. 

For example, if last year 20% of the U.S adult population smoked, 
we might claim that the percentage of smokers in the United States 
this year is greater. So in the simulation we set  and see 
if the data causes us to question this claim. 

• If a sample proportion is likely to occur in the sampling 
distribution, then this sample result could have come from a 
population with the assumed value. In this situation, the data 
do not lead us to doubt our assumption about the value of the 
parameter. We therefore conclude that the evidence from the 
sample is not strong enough to support our original claim 

• In our example, a sample proportion that is likely to occur 
means we do not question the assumption that we made when 
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we set . We cannot conclude that the percentage 
of smokers in the United States is greater than 20% this year. 

• If a sample proportion supports our claim and is unlikely to 
occur in the sampling distribution, then it is unlikely that this 
sample result came from a population with the assumed value. 
In this situation, the data lead us to doubt our assumption 
about the value of the parameter. We conclude that the 
evidence from the sample is strong enough to support the 
claim. 

• In our example, a sample proportion that is unusually large 
means that the data makes us doubt the assumption we made 
when we set . We therefore is probably greater 
than 20% this year. 

Likely or unlikely? It depends on how much the sample proportions 
vary. If the normal model is a good fit for the sampling distribution, 
we can calculate a z-score and use a simulation to associate a 
probability with our “likely” or “unlikely” statement. Recall what we 
learned in “Distribution of Sample Proportions” to calculate the 
z-score. 

We can also write this as one formula: 
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129. Putting It Together: 
Linking Probability to 
Statistical Inference 

 

Let’s Summarize 

Overview of Statistical Inference 

• Inference is based on probability. 
• A parameter is a number that describes a population. A 

statistic is a number that describes a sample. In inference, we 
use a statistic to draw a conclusion about a parameter. These 
conclusions include a probability statement that describes the 
strength of the evidence or our certainty. 

• For a categorical variable, the parameter and statistics are 
proportions. For a quantitative variable, the parameter and 
statistics are means. 

• For a given situation, we assume the parameter is fixed. It does 
not change. In contrast, statistics always vary. When we take 
random samples, the fluctuation in statistics is due to chance. 
We create simulations and mathematical models to describe 
the variability we expect to see in sample statistics. 

Sampling Distribution for a Sample Proportion 

• Larger samples have less variability. 

Putting It Together: Linking
Probability to Statistical



• For a categorical variable we assume that population has a 
proportion p of successes. When we select random samples 
from this population, the sample proportions have a pattern in 
the long run. We can describe this pattern with a mathematical 
model of the sampling distribution. The model has the 
following center, spread, and shape. 

Center: Mean of the sample proportions is p, the population 
proportion. 

Spread: Standard deviation of the sample proportions is 

Shape: A normal model is a good fit if the expected number 
of successes and failures is at least 10. We can translate these 
conditions into formulas:    . 

• When a normal is a good fit for the sampling distribution, we 
can calculate a z-score, which allows us to use the standard 
normal model to find probabilities associated with the 
sampling distribution. 

We can also write this as one formula: 
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Introduction to Statistical Inference 

This course presents two types of inference procedures: confidence 
intervals and hypothesis tests. The goal of a confidence interval is 
to estimate a parameter value. The goal of a hypothesis test is to 
test a claim about a parameter. Both types of inference are based on 
the sampling distribution of sample statistics. For both, we report 
probabilities that state what would happen if we used the inference 
method many times. 

Confidence Intervals 

The purpose of a confidence interval is to estimate a population 
parameter on the basis of a sample statistic. Sample statistics vary, 
so there is always error in our estimate, but we never know how 
much. We therefore use the standard error, which is the average 
error in our sample estimates, to create a margin of error. The 
margin of error is related to our confidence that the interval 
contains the population parameter. 

We investigated the 95% confidence interval for a population 
proportion in depth. When a normal model is a good fit for the 
sampling distribution, the 95% confidence interval has a margin of 
error equal to 2 standard errors. 

We say we are 95% confident that the calculated interval contains 
the population proportion. This means that 95% of the time, these 
intervals will actually contain the population proportion, and we will 
be right. Five percent of the time, we will be wrong. We can never 

Putting It Together: Linking Probability to Statistical Inference  |  701



tell if a confidence interval does or does not contain the population 
proportion we are trying to estimate. 

Hypothesis Tests 

The purpose of a hypothesis test is to use sample data to test a claim 
about a population parameter. We investigated testing a claim about 
a population proportion informally. 

We make a claim about a population proportion. From the claim, 
we state an assumption about the value of the population 
proportion. Could the data have come from this population? Or is 
the sample proportion too far off? It depends on how much random 
samples from this population vary. We construct a simulation or a 
normal model to represent the sampling distribution that occurs 
when sampling from a population with this assumed value. We make 
a judgment about whether the sample proportion is likely or unlikely 
to occur in the sampling distribution. If the data supports our claim 
and is unlikely, then we doubt our assumption about the population 
proportion. 

Likely or unlikely? It depends on how much the sample 
proportions vary. If the normal model is a good fit for the sampling 
distribution, we can find a z-score and use a simulation to associate 
a probability with our “likely” or “unlikely” statement. 
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PART VIII 

CHAPTER 8: INFERENCE 
FOR ONE PROPORTION 
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130. Why It Matters: Inference 
for One Proportion 

 

Learning Objectives 

• Recognize situations that call for testing a claim 
about a population proportion or estimating a 
population proportion. 

In Inference for One Proportion, we focus on making inferences 
about population proportions. The types of research questions we 
focus on in this module are bolded in the text below. Notice that we 
are working with categorical variables again. 
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Type of 
Question Examples Variable 

Type Unit 

Make an 
estimate 
about the 
population 

What proportion of all U.S. 
adults support the death 
penalty? 

Categorical 
variable 

Inference 
for One 
Proportion 

What is the average number 
of hours that community 
college students work each 
week? 

Quantitative 
variable 

Inference 
for Means 

Test a claim 
about the 
population 

Do the majority of 
community college students 
qualify for federal student 
loans? 

Categorical 
variable 

Inference 
for One 
Proportion 

Has the average birth weight 
in a town decreased from 
3,500 grams? 

Quantitative 
variable 

Inference 
for Means 

Compare 
two 
populations 

Are teenage girls more likely 
to suffer from depression 
than teenage boys? 

Categorical 
variable 

Inference 
for Two 
Proportions 

In community colleges do 
female students have a higher 
average GPA than male 
students? 

Quantitative 
variable 

Inference 
for Means 

We will build on what we learned in in the previous module with two 
additions. 

• We use more formal vocabulary and notation for hypothesis 
testing. 

• We will not know the population proportion, so we make some 
minor adjustments to the model of the sampling distribution 
that we developed in Linking Probability to Statistical Inference. 
The adjustments affect how we calculate the standard error. 

Here again is the Big Picture. We highlighted ideas new to Inference 
for One Proportion in purple. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=153 
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131. Introduction: Estimating 
a Population Proportion 

What you’ll learn to do: Construct a confidence 
interval to estimate a population proportion. 

LEARNING OBJECTIVES 

• Recognize situations that call for testing a claim 
about a population proportion or estimating a 
population proportion. 

• Construct a confidence interval to estimate a 
population proportion when conditions are met. 
Interpret the confidence interval in context. 

• For a confidence interval, interpret the meaning of 
a confidence level and relate it to the margin of error. 
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132. Estimating a Population 
Proportion (1 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
population proportion when conditions are met. 
Interpret the confidence interval in context. 

Introduction 

In “Estimating a Population Proportion,” we continue our discussion 
of estimating a population proportion with a confidence interval. 
Recall that the purpose of a confidence interval is to use a sample 
proportion to construct an interval of values that we can be 
reasonably confident contains the true population proportion. 

The basic idea is summarized here: 

• When we select a random sample from the population of 
interest, we expect the sample proportion to be a good 
estimate of the population proportion. But we also know that 
sample proportions vary, so we expect some error. (Remember 
that the error here is due to chance. It is not due to a mistake 
that anyone made.) 

• For a given sample proportion, we will not know the amount of 
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error, so we use the standard error as an estimate for the 
average amount of error we expect in sample proportions. 
(Recall that the standard error is the expected standard 
deviation of sample proportions when we take many, many 
random samples.) 

• If a normal model is a good fit for the sampling distribution, 
then about 95% of sample proportions estimate the population 
proportion within 2 standard errors. We say that we are 95% 
confident that the following interval contains the population 
proportion. 

You may realize that this formula for the confidence interval is a 
bit odd, since our goal in calculating the confidence interval is to 
estimate the population proportion p. Yet the formula requires that 
we know p. In the section “Introduction to Statistical Inference,” we 
used an estimate for p from a previous study when calculating the 
confidence interval. This is not the usual way statisticians estimate 
the standard error, but it captured the main idea and allowed us 
to practice finding and interpreting confidence intervals. Now, we 
develop a different way to estimate standard error that is commonly 
used in statistical practice. 
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Example 

Community College Students and Gender 

According to a 2010 report from the American Council on 
Education, females make up 57% of the college population 
in the United States. Students in a statistics class at 
Tallahassee Community College want to determine the 
proportion of female students at TCC. They select a 
random sample of 135 TCC students and find that 72 are 
female, which is a sample proportion of 72 / 135 ≈ 0.533. So 
53.3% of the students in the sample are female. 

What can they conclude about the proportion of females at 
the college? How confident can they be in their estimate? 

To answer these questions, we need to find a confidence 
interval. 

Checking conditions: 

We learned in Linking Probability to Statistical Inference 
that a confidence interval comes from a normal model of 
the sampling distribution. Let’s first make sure that a 
normal model is appropriate here. Recall the two 
conditions for using a normal model for sample 
proportions: 

• The sample must be random. 
• The expected number of successes in the sample, 

np, and the expected number of failures, n(1 – p), are 
both greater than or equal to 10. In symbols, this is np 
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≥ 10 and n(1 − p) ≥ 10. Recall that success doesn’t mean 
good and failure doesn’t mean bad. A success is just 
what we are counting. 

When we try to check these conditions, we have a 
problem. We do not know p, the population proportion. In 
fact, p is what we are trying to estimate! So we cannot 
determine the expected number of successes and failures. 
Our solution to this problem is to adjust these conditions. 
Advanced theory tells us that if the actual number of 
successes and failures in the sample are greater than or 
equal to 10, then a normal model is still a good fit. 

This sample contains 72 successes (female students) and 
63 failures (male students). Both are greater than 10. We 
therefore use the normal model for the sampling 
distribution. 

Finding the margin of error: 

We know that a sample proportion is only an estimate for 
the population proportion. We do not expect the sample 
proportion to equal the population proportion, so there is 
some error due to random chance. We use the standard 
deviation of the sample proportions to describe the amount 
of error we can expect in random samples. We call this the 
standard error. 

In Linking Probability to Statistical Inference, we learned 
that the standard error of the sample proportion depends 
on the population proportion and sample size. Here is the 
formula for the standard error: 
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When we use a normal model for the sampling 
distribution, 95% of sample proportions estimate the 
population proportion within approximately 2 standard 
errors. So the margin of error is the following: 

Now let’s calculate the margin of error for the TCC 
estimate of 53.3%. Notice that we have the same problem 
we had earlier. We don’t know p, the population proportion. 
So we can’t calculate the margin of error! Our solution to 
this problem is to estimate the standard error using the 
sample proportion in place of p. We call this the estimated 
standard error, and the formula is: 

For this example, the estimated standard error is 

So the margin of error for the 95% confidence interval is: 
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Finding the confidence interval: 

We can interpret the margin of error by saying we are 
95% confident that the proportion of all students at TCC 
who are female is within 0.086 of our sample proportion of 
0.533. We can then write the interval in the following form: 

When we add and subtract the margin of error from the 
sample proportion, the confidence interval is 0.447 to 0.619. 

Conclusion: 

We are 95% confident that the proportion of all TCC 
students who are female is between 0.447 and 0.619. We can 
also make this statement using percentages. We are 95% 
confident that the percentage of all TCC students who are 
female is between 44.7% and 61.9%. 

Recall from Linking Probability to Statistical Inference that 
95% confidence means this method captures the population 
proportion about 95% of the time. 

Summary 

Conditions for using the normal model of the sampling 
distribution: 

In Linking Probability to Statistical Inference, we saw that a normal 
model describes the behavior of sample proportions if np ≥ 10 and 
n(1 − p) ≥ 10. These formulas say that the expected number of 
successes and failures in the sample must be 10 or greater. In 
Inference for One Proportion, we will never know the value of the 
population proportion p, so we estimate p with a sample proportion. 
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Now we will assume that we can use a normal model if 
. 

These formulas say that the actual number of successes and 
failures in the sample are 10 or greater. 

The 95% confidence interval for estimating population 
proportion p: 

In Linking Probability to Statistical Inference, we learned that the 
error in an estimate is related to the spread in the sampling 
distribution. We saw that the standard error of the sampling 
distribution of sample proportions is given by this formula: 

In Inference for One Proportion, we are estimating the population 
proportion p. So we estimate the standard error by replacing p
with the sample proportion, which affects the margin of error in 
the confidence interval. We have the following adjustment to the 
confidence interval formula: 

 

Learn By Doing 

Foothill College’s athletic department wants to calculate 
the proportion of students who have attended a women’s 
basketball game at the college. They use student email 
addresses, randomly choose 220 students, and email them. 
Of the 145 who responded, 22 had attended a women’s 
basketball game. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=155 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=155 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=155 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=155 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=155 
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133. Estimating a Population 
Proportion (2 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
population proportion when conditions are met. 
Interpret the confidence interval in context. 

• For a confidence interval, interpret the meaning of 
a confidence level and relate it to the margin of error. 

Introduction 

On the previous page, we estimated a population proportion by 
calculating the approximate 95% confidence interval. 

We used the following formula: 

This formula is valid only if we can use a normal distribution to 
model the sampling distribution for the sample proportions. We can 
use the normal model if we have at least 10 successes and at least 10 
failures in the sample. 

Recall that we used 2 estimated standard errors because of the 
empirical rule. The empirical rule says that approximately 95% of 
all sample proportions will fall within 2 standard errors of the 
population proportion. So 95% of the sample proportions have an 
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error that is less than 2 standard errors. On the previous page, 
we made a slight modification using the estimated standard error 
where we replaced  with . 

We often use the 95% confidence level, but in practice you may 
also see 90% and 99% confidence levels. On this page, we begin 
to investigate the impact of changing the confidence level on the 
confidence interval. 

Example 

Community College Students and Gender 

Recall from the previous page that students in a statistics 
class at Tallahassee Community College wanted to 
determine the proportion of female students at TCC. They 
selected a random sample of 135 students and found that 72 
were female. Previously, we calculated an approximate 95% 
confidence interval. We estimated that the proportion of all 
TCC students who are female is between 0.447 and 0.619. 

Now we calculate the 90% confidence interval for the 
proportion of all TCC students who are female. Because the 
results from the sample are the same, we do not need to 
check the conditions for a normal model for the sampling 
distribution. We already verified that these conditions are 
met. 

Because the sample proportion is the same, the 
estimated standard error will also be the same: 
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But the margin of error will change. We estimated the 
margin of error for the 95% confidence interval by 
multiplying the estimated standard error by 2. Now we 
need to determine the z-scores that will give us the middle 
90% of the normal distribution. 

 

Technology is used to determine the z-scores that mark 
off the middle 90% of the sampling distribution. The 
z-scores are ±1.65. Using this value in place of 2 in the 
margin of error gives us a 90% confidence interval: 

95% confidence interval: 0.533 ± 2(0.043) ≈ 0.533 ± 0.086
= (0.447, 0.619) 

90% confidence interval: 0.533 ± 1.65(0.043) ≈ 0.533 ± 
0.07 = (0.463, 0.603) 

Note: Frequently, you will see the z-scores that mark off 
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the middle 90% of the sample proportions represented 
more precisely as ±1.645. 

What is the impact of decreasing the confidence level to 
90%? 

The 90% interval allows a smaller margin for error than 
the 95% interval. The 90% confidence interval is narrower 
than the 95% confidence interval. It may seem like an 
advantage, but there is a trade-off because we now have 
less confidence that the interval contains the population 
proportion. This is an important point. Lower confidence 
means smaller margin of error. We investigate this idea in 
more depth later. 

Confidence Interval Formula 

Since we are no longer restricting our confidence level to 95%, we 
can generalize the formula for a confidence interval: 

We use a little subscript c on the z-score, Zc , to emphasize that 
the z-score is connected to the confidence level. When giving the 
value of Zc, we always use the positive z-score. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=156 

Comment 

Technology often uses 3 decimal places for Zc. 
For our most common confidence levels, the values of Zc are: 

90% confidence interval: Zc ≈ 1.645 
95% confidence interval: Zc ≈ 1.960 (2 is a rough 
approximation; 1.960 is more accurate) 
99% confidence interval: Zc ≈ 2.576 

So when you calculate the confidence interval, rounding will slightly 
affect the values in your interval. 
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134. Estimating a Population 
Proportion (3 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
population proportion when conditions are met. 
Interpret the confidence interval in context. 

• For a confidence interval, interpret the meaning of 
a confidence level and relate it to the margin of error. 

Introduction 

On the previous page, we learned the general formula for a 
confidence interval for a population proportion: 

Recall that, for our most common confidence levels, the values of 
Zc are: 

90% confidence interval: Zc ≈ 1.645 
95% confidence interval: Zc ≈ 1.960 
99% confidence interval: Zc ≈ 2.576 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=157 

Confidence Interval Width 

The goal of the confidence interval is to estimate the population 
proportion. If the interval contains the population proportion, a 
small amount of error means we have a more precise estimate. 
Narrower confidence intervals give more precise interval estimates 
for the population proportion, but this is true only if the intervals 
contain the population proportion. 

We saw in the previous activity that a lower confidence level 
corresponds to a smaller margin of error. In general, 90% 
confidence intervals are narrower than 95% confidence intervals 
because there is a smaller margin of error. But we are less confident 
that 90% confidence intervals contain the population proportion. 
Recall that in the long run, 10% of these intervals will not contain the 
population proportion at all! We therefore have to choose between 
precision and confidence. 

Of course, ideally, we would like to have a narrow interval and a 
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high level of confidence. We can achieve this by increasing the size 
of the sample. 

Example 

College Students and Marijuana 
Legalization 

National surveys show that about 43% of American adults 
support the legalization of marijuana. What proportion of 
students at Capital Community College support the 
legalization of marijuana? Suppose students conduct two 
surveys. For one survey, they randomly select a sample of 
100 students. For the other survey, they randomly select a 
sample of 400 students. Surprisingly, in both surveys, the 
proportion in favor of legalization is 55%. The students 
calculate the 95% confidence interval for both surveys. 

What is the impact of the size of the sample on the 
confidence interval? 

For the sample of size 100, the confidence interval is 

For the sample of size 400, the confidence interval is 

Notice that the larger sample gives a smaller margin of 
error. The margin of error for the sample of 400 is half that 
of the sample of 100. 

This makes sense. Our intuition tells us that larger 
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samples should give more precise estimates of the 
population proportion. We also saw this in Module 7 where 
we investigated the impact of sample size on the variability 
in the sample proportions. We saw that proportions from 
larger samples vary less. If there is less variability in the 
sampling distribution, the standard error is smaller. Since 
we use the standard error to find the margin of error, larger 
samples will produce a smaller margin of error. 

More specifically, we can see that a sample four times 
larger gives a margin of error half as large because we 
divide by , the square root of the sample size, in the 

formula. Similarly, a sample nine times larger gives a margin 
of error one-third as large. 

In general, to decrease the margin of error, we can 
increase the sample size or decrease the confidence level. 
We always prefer to increase the sample size because it 
allows us to keep a higher level of confidence. We want a 
higher level of confidence because the confidence level is 
the proportion of intervals that actually contains the 
population proportion. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=157 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=157 
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Let’s Summarize 

• The sample proportion is a point estimate for the population 
proportion, but it is almost always wrong. We therefore use an 
interval estimate, called a confidence interval, to give us a 
range of values for the population proportion. 

• We can calculate a confidence interval for a population 
proportion when we can use a normal distribution to model 
the long-run behavior of sample proportions. We can use a 
normal distribution model when there are at least 10 observed 
successes and 10 observed failures. 

• The interpretation of a confidence interval depends on the 
confidence level. For example, using a 95% confidence level, 
we are 95% confident that the population proportion falls 
within the interval. 

• A confidence interval is a sample proportion plus or minus a 
margin of error. The margin of error is related to the 
confidence level. For a 95% confidence level, the margin of 
error is approximately two standard errors. The formula is  

• Lower confidence levels and higher sample sizes lead to 
narrower confidence intervals. A narrower confidence interval 
has a smaller error. Since we want to be confident that an 
interval accurately estimates the population proportion, high 
levels of confidence are desirable. So larger sample sizes are 
the preferred way to decrease the error and create narrower 
confidence intervals. 
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135. Introduction: Hypothesis 
Testing 

What you’ll learn to do: Given a claim about a 
population, construct an appropriate set of 
hypotheses to test and properly interpret p values 
and Type I / II errors. 

LEARNING OBJECTIVES 

• Given a claim about a population, determine null 
and alternative hypotheses. 

• Recognize the logic behind a hypothesis test and 
how it relates to the P-value. 

• Recognize type I and type II errors. 
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136. Hypothesis Testing (1 of 
5) 

 

Learning Objectives 

• When testing a claim, distinguish among situations 
involving one population mean, one population 
proportion, two population means, or two population 
proportions. 

• Given a claim about a population, determine null 
and alternative hypotheses. 

Introduction 

In inference, we use a sample to draw a conclusion about a 
population. Two types of inference are the focus of our work in this 
course: 

• Estimate a population parameter with a confidence interval. 
• Test a claim about a population parameter with a hypothesis 

test. 

We can also use samples from two populations to compare those 
populations. In this situation, the two types of inference focus on 
differences in the parameters. 
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• Estimate a difference in population parameters with a 
confidence interval. 

• Test a claim about a difference in population parameters with a 
hypothesis test. 

In “Estimating a Population Proportion,” we learned to estimate a 
population proportion using a confidence interval. For example, 
we estimated the proportion of all Tallahassee Community College 
students who are female and the proportion of all American adults 
who used the Internet to obtain medical information in the previous 
month. We will revisit confidence intervals in future modules. 

Now we look more carefully at how to test a claim with a 
hypothesis test. Statistical investigations begin with research 
questions. We begin our discussion of hypothesis tests with 
research questions that require us to test a claim. Later we look at 
how a claim becomes a hypothesis. 
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Example 

Research Questions about Testing Claims 

 

Let’s revisit some of the research questions from 
examples in the module Types of Statistical Studies and 
Producing Data that involve testing a claim. 

Is the average course load for community college students 
less than 12 semester hours? This question contains a claim 
about a population mean. The question contains 
information about the population, the variable, and the 
parameter. The population is all community college 
students. The variable is course load in semester hours. It is 
quantitative, so the parameter is a mean. The claim is, “The 
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mean course load for all community college students is less 
than 12 semester hours.” 

Do the majority of community college students qualify for 
federal student loans? This question contains a claim about 
a population proportion and information about the 
population, the variable, and the parameter. The population 
is all community college students. The variable is Qualify 
for federal student loan (yes or no). It is categorical, so the 
parameter is a proportion. The claim is, “The proportion of 
community college students who qualify is greater than 0.5” 
(a majority means more than half, or 0.5). 

In community colleges, do female students and male 
students have different mean GPAs? This question contains a 
claim that compares two population means. Again, we see 
information about the populations, the variable, and the 
parameters. The two populations are female community 
college students and male community college students. The 
variable is GPA. It is quantitative, so the parameters are 
means. The claim is, “The mean GPA for female community 
college students is different from the mean GPA for male 
community college students.” Notice that the claim 
compares the two population means, but there is no claim 
about the numeric value of either mean. 

Are college athletes more likely than nonathletes to receive 
academic advising? This question contains a claim that 
compares two population proportions: college athletes and 
college students who are not athletes. The variable is 
Receive academic advising (yes or no). The variable is 
categorical, so the parameters are proportions. The claim 
is, “The proportion of all college athletes who receive 
academic advising is greater than the proportion of all 
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nonathletes in college who receive academic advising.” 
Notice that the claim compares two population 
proportions, but there is no claim about the numeric value 
of either proportion. 

In the case of testing a claim about a single population 
parameter, we compare it to a numeric value. In the case of 
testing a claim about two population parameters, we 
compare them to each other. 

Learn By Doing 

Identify the type of claim in each research question 
below. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=159 

An interactive or media element has been 
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excluded from this version of the text. You can view it 

online here: https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=159 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=159 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=159 

Next Steps: Forming Hypotheses 

We already know that in inference we use a sample to draw a 
conclusion about a population. If the research question contains a 
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claim about the population, we translate the claim into two related 
hypotheses. 

The null hypothesis is a hypothesis about the value of the 
parameter. The null hypothesis relates to our work in Linking 
Probability to Statistical Inference where we drew a conclusion 
about a population parameter on the basis of the sampling 
distribution. We started with an assumption about the value of 
the parameter, then used a simulation to simulate the selection of 
random samples from a population with this parameter value. Or we 
used the parameter value in a mathematical model to describe the 
center and spread of the sampling distribution. The null hypothesis 
gives the value of the parameter that we will use to create the 
sampling distribution. In this way, the null hypothesis states what we 
assume to be true about the population. 

The alternative hypothesis usually reflects the claim in the 
research question about the value of the parameter. The alternative 
hypothesis says the parameter is “greater than” or “less than” or “not 
equal to” the value we assume to true in the null hypothesis. 

Example 

Stating Hypotheses 

Here are the hypotheses for the research questions from 
the previous example. The null hypothesis is abbreviated 
H0. The alternative hypothesis is abbreviated Ha. 

Is the average course load for community college students 
less than 12 semester hours? 
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H0: The mean course load for community college 
students is equal to 12 semester hours. 

Ha: The mean course load for community college 
students is less than 12 semester hours. 

Do the majority of community college students qualify for 
federal student loans? 

H0: The proportion of community college students 
who qualify for federal student loans is 0.5. 

Ha: The proportion of community college students 
who qualify for federal student loans is greater than 
0.5. 

When the research question contains a claim that 
compares two populations, the null hypothesis states that 
the parameters are equal. We will see in Modules 9 and 10 
that we translate the null hypothesis into a statement about 
“no difference” in parameter values. We revisit this idea in 
more depth later. 

In community colleges, do female students and male 
students have different mean GPAs? 

H0: In community colleges, female and male 
students have the same mean GPAs. 

Ha: In community colleges, female and male 
students have different mean GPAs. 

Are college athletes more likely than nonathletes to receive 
academic advising? 

H0: In colleges, the proportion of athletes who 
receive academic advising is equal to the proportion 
of nonathletes who receive academic advising. 
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Ha: In colleges, the proportion of athletes who 
receive academic advising is greater than the 
proportion of nonathletes who receive academic 
advising. 

Comment 

Here are some general observations about null and alternative 
hypotheses. 

• The hypotheses are competing claims about the parameter or 
about the comparison of parameters. 

• Both hypotheses are statements about the same population 
parameter or same two population parameters. 

• The null hypothesis contains an equal sign. 
• The alternative hypothesis is always an inequality statement. It 

contains a “less than” or a “greater than” or a “not equal to” 
symbol. 

• In a statistical investigation, we determine the research 
question, and thus the hypotheses, before we collect data. 

The process of forming hypotheses, collecting data, and using the 
data to draw a conclusion about the hypotheses is called hypothesis 
testing. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=159 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=159 
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137. Hypothesis Testing (2 of 
5) 

 

Learning Objectives 

• Recognize the logic behind a hypothesis test and 
how it relates to the P-value. 

In this section, our focus is hypothesis testing, which is part of 
inference. On the previous page, we practiced stating null and 
alternative hypotheses from a research question. Forming the 
hypotheses is the first step in a hypothesis test. Here are the general 
steps in the process of hypothesis testing. We will see that 
hypothesis testing is related to the thinking we did in Linking 
Probability to Statistical Inference. 

Step 1: Determine the hypotheses. 
The hypotheses come from the research question. 
Step 2: Collect the data. 
Ideally, we select a random sample from the population. The data 

comes from this sample. We calculate a statistic (a mean or a 
proportion) to summarize the data. 

Step 3: Assess the evidence. 
Assume that the null hypothesis is true. Could the data come from 

the population described by the null hypothesis? Use simulation or 
a mathematical model to examine the results from random samples 
selected from the population described by the null hypothesis. 
Figure out if results similar to the data are likely or unlikely. Note 
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that the wording “likely or unlikely” implies that this step requires 
some kind of probability calculation. 

Step 4: State a conclusion. 
We use what we find in the previous step to make a decision. This 

step requires us to think in the following way. Remember that we 
assume that the null hypothesis is true. Then one of two outcomes 
can occur: 

• One possibility is that results similar to the actual sample are 
extremely unlikely. This means that the data do not fit in with 
results from random samples selected from the population 
described by the null hypothesis. In this case, it is unlikely that 
the data came from this population, so we view this as strong 
evidence against the null hypothesis. We reject the null 
hypothesis in favor of the alternative hypothesis. 

• The other possibility is that results similar to the actual sample 
are fairly likely (not unusual). This means that the data fit in 
with typical results from random samples selected from the 
population described by the null hypothesis. In this case, we do 
not have evidence against the null hypothesis, so we cannot 
reject it in favor of the alternative hypothesis. 
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Example 

Data Use on Smart Phones 

 

According to an article by Andrew Berg (“Report: Teens 
Texting More, Using More Data,” Wireless Week, October 15, 
2010), Nielsen Company analyzed cell phone usage for 
different age groups using cell phone bills and surveys. 
Nielsen found significant growth in data usage, particularly 
among teens, stating that “94 percent of teen subscribers 
self-identify as advanced data users, turning to their 
cellphones for messaging, Internet, multimedia, gaming, 
and other activities like downloads.” The study found that 
the mean cell phone data usage was 62 MB among teens 
ages 13 to 17. A researcher is curious whether cell phone 
data usage has increased for this age group since the 
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original study was conducted. She plans to conduct a 
hypothesis test. 

Step 1: Determine the hypotheses. 

The null hypothesis is often a statement of “no change,” 
so the null hypothesis will state that there is no change in 
the mean cell phone data usage for this age group since the 
original study. In this case, the alternative hypothesis is that 
the mean has increased from 62 MB. 

H0: The mean data usage for teens with smart 
phones is still 62 MB. 

Ha: The mean data usage for teens with smart 
phones is greater than 62 MB. 

Step 2: Collect the data. 

The next step is to obtain a sample and collect data that 
will allow the researcher to test the hypotheses. The 
sample must be representative of the population and, 
ideally, should be a random sample. In this case, the 
researcher must randomly sample teens who use smart 
phones. 

For the purposes of this example, imagine that the 
researcher randomly samples 50 teens who use smart 
phones. She finds that the mean data usage for these teens 
was 75 MB with a standard deviation of 45 MB. Since it is 
greater than 62 MB, this sample mean provides some 
evidence in favor of the alternative hypothesis. But the 
researcher anticipates that samples will vary when the null 
hypothesis is true. So how much of a difference will make 
her doubt the null hypothesis? Does she have evidence 
strong enough to reject the null hypothesis? 

Step 3: Assess the evidence. 
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To assess the evidence, the researcher needs to know 
how much variability to expect in random samples when 
the null hypothesis is true. She begins with the assumption 
that H0 is true – in this case, that the mean data usage for 
teens is still 62 MB. She then determines how unusual the 
results of the sample are: If the mean for all teens with smart 
phones actually is 62 MB, what is the chance that a random 
sample of 50 teens will have a sample mean of 75 MB or 
higher? Obviously, this probability depends on how much 
variability there is in random samples of this size from this 
population. 

The probability of observing a sample mean at least this 
high if the population mean is 62 MB is approximately 0.023 
(later topics explain how to calculate this probability). The 
probability is quite small. It tells the researcher that if the 
population mean is actually 62 MB, a sample mean of 75 MB 
or higher will occur only about 2.3% of the time. This 
probability is called the P-value. 

Note: The P-value is a conditional probability, discussed 
in the module Relationships in Categorical Data with Intro 
to Probability. The condition is the assumption that the null 
hypothesis is true. 

Step 4: Conclusion. 

The small P-value indicates that it is unlikely for a sample 
mean to be 75 MB or higher if the population has a mean of 
62 MB. It is therefore unlikely that the data from these 50 
teens came from a population with a mean of 62 MB. The 
evidence is strong enough to make the researcher doubt 
the null hypothesis, so she rejects the null hypothesis in 
favor of the alternative hypothesis. The researcher concludes 
that the mean data usage for teens with smart phones has 
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increased since the original study. It is now greater than 62 
MB. (P = 0.023) 

Comment 

Notice that the P-value is included in the preceding conclusion, 
which is a common practice. It allows the reader to see the strength 
of the evidence used to draw the conclusion. 

How Small Does the P-Value Have to Be to Reject 
the Null Hypothesis? 

A small P-value indicates that it is unlikely that the actual sample 
data came from the population described by the null hypothesis. 
More specifically, a small P-value says that there is only a small 
chance that we will randomly select a sample with results at least 
as extreme as the data if H0 is true. The smaller the P-value, the 
stronger the evidence against H0. 

But how small does the P-value have to be in order to reject H0? 
In practice, we often compare the P-value to 0.05. We reject the 

null hypothesis in favor of the alternative if the P-value is less than 
(or equal to) 0.05. 

Note: This means that sampling variability will produce results at 
least as extreme as the data 5% of the time. In other words, in the 
long run, 1 in 20 random samples will have results that suggest we 
should reject H0 even when H0 is true. This variability is just due 
to chance, but it is unusual enough that we are willing to say that 
results this rare suggest that H0 is not true. 
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Statistical Significance: Another Way to Describe 
Unlikely Results 

When the P-value is less than (or equal to) 0.05, we also say that 
the difference between the actual sample statistic and the assumed 
parameter value is statistically significant. In the previous example, 
the P-value is less than 0.05, so we say the difference between 
the sample mean (75 MB) and the assumed mean from the null 
hypothesis (62 MB) is statistically significant. You will also see this 
described as a significant difference. A significant difference is an 
observed difference that is too large to attribute to chance. In other 
words, it is a difference that is unlikely when we consider sampling 
variability alone. If the difference is statistically significant, we reject 
H0. 

Other Observations about Stating Conclusions in 
a Hypothesis Test 

In the example, the sample mean was greater than 62 MB. This 
fact alone does not suggest that the data supports the alternative 
hypothesis. We have to determine that the data is not only larger 
than 62 MB but larger than we would expect to see in a random 
sampling if the population mean is 62 MB. We therefore need to 
determine the P-value. If the sample mean was less than or equal 
to 62 MB, it would not support the alternative hypothesis. We don’t 
need to find a P-value in this case. The conclusion is clear without 
it. 

We have to be very careful in how we state the conclusion. There 
are only two possibilities. 

• We have enough evidence to reject the null hypothesis and 
support the alternative hypothesis. 
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• We do not have enough evidence to reject the null hypothesis, 
so there is not enough evidence to support the alternative 
hypothesis. 

If the P-value in the previous example was greater than 0.05, then 
we would not have enough evidence to reject H0 and accept Ha. 
In this case our conclusion would be that “there is not enough 
evidence to show that the mean amount of data used by teens with 
smart phones has increased.” Notice that this conclusion answers 
the original research question. It focuses on the alternative 
hypothesis. It does not say “the null hypothesis is true.” We never 
accept the null hypothesis or state that it is true. When there is not 
enough evidence to reject H0, the conclusion will say, in essence, 
that “there is not enough evidence to support Ha.” But of course we 
will state the conclusion in the specific context of the situation we 
are investigating. 

We compared the P-value to 0.05 in the previous example. The 
number 0.05 is called the significance level for the test, because a 
P-value less than or equal to 0.05 is statistically significant (unlikely 
to have occurred solely by chance). The symbol we use for the 
significance level is α (the lowercase Greek letter alpha). We 
sometimes refer to the significance level as the α-level. We call 
this value the significance level because if the P-value is less than 
the significance level, we say the results of the test showed a 
significance difference. 

If the P-value ≤ α, we reject the null hypothesis in favor of the 
alternative hypothesis. 

If the P-value > α, we fail to reject the null hypothesis. 
In practice, it is common to see 0.05 for the significance level. 

Occasionally, researchers use other significance levels. In particular, 
if rejecting H0 will be controversial or expensive, we may require 
stronger evidence. In this case, a smaller significance level, such 
as 0.01, is used. As with the hypotheses, we should choose the 
significance level before collecting data. It is treated as an agreed-
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upon benchmark prior to conducting the hypothesis test. In this 
way, we can avoid arguments about the strength of the data. 

We look more at how to choose the significance level later. On this 
page we continue to use a significance level of 0.05. 

First let’s look at some exercises that focus on the P-value and its 
meaning. Then we’ll try some that cover the conclusion. 

Learn By Doing 

For many years, working full-time has meant working 40 
hours per week. Nowadays, it seems that corporate 
employers expect their employees to work more than this 
amount. A researcher decides to investigate this 
hypothesis. 

H0: The average time full-time corporate 
employees work per week is 40 hours. 

Ha: The average time full-time corporate employees 
work per week is more than 40 hours. 

To substantiate his claim, the researcher randomly 
selects 250 corporate employees and finds that they work 
an average of 47 hours per week with a standard deviation 
of 3.2 hours. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=160 

According to the Centers for Disease Control (CDC), 
roughly 21.5% of all high school seniors in the United States 
have used marijuana. (The data were collected in 2002. The 
figure represents those who smoked during the month 
prior to the survey, so the actual figure might be higher.) A 
sociologist suspects that the rate among African American 
high school seniors is lower. In this case, then, 

H0: The rate of African American high-school 
seniors who have used marijuana is 21.5% (same as 
the overall rate of seniors). 

Ha: The rate of African American high-school 
seniors who have used marijuana is lower than 21.5%. 

To check his claim, the sociologist chooses a random 
sample of 375 African American high school seniors,and 
finds that 16.5% of them have used marijuana. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=160 
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138. Hypothesis Testing (3 of 
5) 

 

Learning Objectives 

• Recognize the logic behind a hypothesis test and 
how it relates to the P-value. 
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Example 

Community College Students and Federal 
Student Loans 

According to the Project on Student Debt, “at least one 
million community college students, one in 10 nationally, do 
not have access to federal student loans – the safest, most 
affordable way to borrow for college. A new issue brief from 
the Project on Student Debt finds that almost a quarter of 
all community colleges do not participate in federal loan 
programs, thereby forcing needy students to resort to 
riskier, more expensive options such as private student 
loans and credit cards” (SOURCE: PROJECT ON STUDENT 
DEBT, PRESS RELEASE, APRIL 17, 2008). 

Is the proportion of community colleges that do not 
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participate in federal loan programs less than 25%, as 
reported? Let’s conduct a hypothesis test to find out. 

Step 1: Determine the Hypotheses. 

H0: The proportion of community colleges that do 
not participate in federal loan programs is 0.25. 

Ha: The proportion of community colleges that do 
not participate in federal loan programs is less than 
0.25. 

Step 2: Collect the data. 

For the purposes of this example, imagine that we select 
a random sample of 80 community colleges from the over 
1,100 community colleges in the United States. Of the 80, 
suppose that 16 do not participate in federal loan programs, 
so the sample proportion is 0.20. 

Because this sample proportion is less than 0.25, it 
provides evidence in favor of the alternative hypothesis. But 
we anticipate that samples will vary when the null 
hypothesis is true. How much of a difference will make us 
doubt the null hypothesis? Do we have evidence strong 
enough to reject the null hypothesis and accept the 
alternative hypothesis? 

Step 3: Assess the evidence. 

To assess the evidence, we need to know how much 
variability to expect in random samples when the null 
hypothesis is true. We begin with the assumption that H0 is 
true. In this case, we assume that 25% of community 
colleges do not participate in the federal loan programs. We 
then determine how unusual the results of the sample are. 
We ask, If the proportion of all community colleges without 
federal loan programs is 0.25, what is the chance that the 
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proportion in a random sample of 80 community colleges is 
0.20 or less? Obviously, this probability depends on how 
much variability exists in random samples of this size from 
this population. 

The probability of observing a sample proportion at least 
this small if the population proportion is 0.25 is 
approximately 0.15 (upcoming topics explain how to 
calculate this probability). This is the P-value. It tells us that 
if the population proportion is actually 0.25, we will see a 
sample proportion of 0.20 or less about 15% of the time in 
random sampling. 

Note: The P-value is a conditional probability. The 
condition is the assumption that the null hypothesis is true 
– in this case, that the population proportion is 0.25. 

Step 4: Conclusion. 

Note that the P-value is fairly large, so it is not surprising 
to see a sample proportion of 0.20 or lower if the 
population proportion is 0.25. If we use a significance level 
of 0.05, the P-value is larger than 0.05, so the difference we 
observe between the sample proportion and the assumed 
population proportion is not statistically significant. 
Differences this large can be explained by chance. We fail to 
reject the null hypothesis. Here is our conclusion. 

The data do not provide significant evidence that the 
proportion of community colleges without federal loan 
programs is less than 25%. 

Note: The conclusion answers our original research 
question. It focuses on the claim that is the alternative 
hypothesis. It does not say “the null hypothesis is true.” We 
never accept the null hypothesis or state that it is true. 
When there is not enough evidence to reject H0, the 
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conclusion will say, in essence, “that there is not enough 
evidence to support Ha.” 

Summary 

Now that we have seen two hypothesis tests, let’s summarize the 
steps: 
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Learn By Doing 

The following two hypotheses are tested: 

H0: The proportion of U.S. adults who support gay 
marriage is roughly 50%. 

Ha: The proportion of U.S. adults who support gay 
marriage is above 50% (i.e., the majority support). 

Suppose a survey was conducted in which a random 
sample of 1,100 U.S. adults were asked about their opinions 
on gay marriage, and based on the data, the P-value was 
found to be 0.002. 

Comment: Throughout this activity, use a 0.05 (5%) 
significance level (cutoff). 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=161 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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139. Hypothesis Testing (4 of 
5) 

 

Learning Objectives 

• Recognize the logic behind a hypothesis test and 
how it relates to the P-value. 

Hypothesis testing appears in all upcoming modules. The process 
and the logic of the hypothesis test will always be the same, but the 
details will differ somewhat. 

Every hypothesis test will use a P-value to make a decision about 
the population(s). The P-value is the connection between 
probability and decision-making in inference. Now we discuss the 
P-value in more depth and relate it to our work in Linking 
Probability to Statistical Inference. Later we use both simulations 
and statistical software to find the P-value. 

To develop a better understanding of the P-value, we need to 
return to the idea of a sampling distribution and a normal 
probability model. These are ideas from Linking Probability to 
Statistical Inference. 
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Example 

What Is a P-value? 

Let’s return to the familiar example of the 2008 
presidential election. In that election, newspapers reported 
that Obama received 40% of the white male vote. We 
wonder if a smaller percentage of white males will support 
Obama in the 2012 election. We define the following 
hypotheses and conduct a hypothesis test. 

H0: The proportion of white males voting for 
Obama in 2012 is 0.40. 

Ha: The proportion of white males voting for 
Obama in 2012 is less than 0.40. 

We select a random sample of 200 white male voters and 
find that 35% plan to vote for Obama in 2012. Clearly 35% is 
less than 40%. But is the difference statistically significant 
or due to chance? If the population proportion is 0.40, we 
expect to see sample proportions vary from this. But will 
sample proportions as small as or smaller than 0.35 occur 
very often? What’s the probability? 

The probability (P-value) is about 0.078. 

The P-value is the chance that a random sample of 200 
white males will have, at most, 35% supporting Obama if 
40% of this population supports Obama. This is quite a 
mouthful. We find that visualizing the sampling distribution 
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helps us understand the P-value. Here is a diagram that 
may be helpful in interpreting the P-value. 

 

In general, the P-value is the probability that sample 
results are as extreme as or more extreme than the result 
observed in the data if the null hypothesis is true. The 
phrase “as extreme as or more extreme than” means further 
from the center of the sampling distribution in the 
direction of the alternative hypothesis. 

Note: You may recall the concept of a conditional 
probability from Relationships in Categorical Data with 
Intro to Probability. The P-value is a conditional probability. 
The condition is “the null hypothesis is true.” 

Note: We can also look at the P-value in terms of error in 
the sample proportion. If 40% of this population support 
Obama, then our sample with 35% supporting Obama has a 
5% error. From this perspective, the P-value is the chance 
that sample proportions supporting the alternative 
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hypothesis have as much as or more error than the data. For 
this example, the P-value describes sample proportions less 
than 0.40 that deviate 0.05 or more from 0.40. This 
describes sample proportions at or below 0.35. 

Comment 

Recall in Linking Probability to Statistical Inference when we 
investigated the conditions that make a normal model a good fit 
for the sampling distribution. When a normal model is a good fit, 
we use it to find probabilities. In the Obama example, we can see 
that a normal model is a good fit for the sampling distribution, 
so we can find the P-value by calculating the z-score and using 
a simulation. Below we created a diagram to remind you how the 
sampling distribution relates to the standard normal model of 
z-scores. We will find P-values in this way in “Hypothesis Test for a 
Population Proportion,” but for now, we focus on what the P-value 
is and how to use it to make decisions. 
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Notice that for our example , the P-value from the standard 

normal curve (0.074) is not exactly equal to the relative frequency in 
the simulated sampling distribution (0.078), but it is close. Both of 
these values represent estimates of the probability we want. 

In hypothesis testing you use the standard normal curve (or a 
similar model) to find P-values. For this reason, you will frequently 
see the P-value defined in terms of the “test statistic,” which is the 
z-score in our example. Here is a common definition: The P-value 
is the probability of obtaining a test statistic at least as extreme as 
the one that was actually observed, assuming the null hypothesis is 
true. 

Hypothesis Testing (4 of 5)  |  763



Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=162 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=162 
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Comment 

The purpose of the hypothesis test is to describe the degree of 
evidence that the sample provides against the null hypothesis. The 
P-value does this job. In the next two activities, we do not give a P-
value. We want you to practice visualizing the sampling distribution 
to identify the most convincing evidence against the null 
hypothesis. This type of visualization is important to understanding 
the ideas we discuss on this page. 

Example 

More on Using the P-Value to Make a 
Decision 

Let’s finish the hypothesis test about white male support 
for Obama. 

H0: The proportion of white males voting for 
Obama in 2012 is 0.40. 

Ha: The proportion of white males voting for 
Obama in 2012 is less than 0.40. 

Recall our random sample of 200 white male voters with 
35% planning to vote for Obama in 2012. Clearly 35% is less 
than 40%, but is the difference statistically significant or 
due to chance? 

The probability (P-value) is about 0.078. What can we 
conclude? A small P-value indicates that the data are 
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unlikely to occur in random sampling from a population in 
which the null hypothesis is true. So the smaller the P-
value, the stronger the evidence is against the null 
hypothesis. 

Do you view something that happens 7.8% of the time as 
“unlikely”? This is a judgment call. There is no right or 
wrong answer. Because this is a judgment call, we will often 
agree to a definition of “unlikely” before we run the test. 
This is the significance level, α. The significance level is a 
benchmark for how small the P-value must be in order for 
us to say results are statistically significant. It gives us a 
cutoff point for rejecting the null hypothesis. Here are the 
decision-making rules that we gave earlier. 

If the P-value ≤ α, we reject the null hypothesis in favor of 
the alternative hypothesis. 

If the P-value > α, we fail to reject the null hypothesis. 

Why do these “rules” make sense? Again, we think that 
visualizing a simulation of the sampling distribution is 
helpful. 

 

Keep in mind that all of the sample proportions in the 
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simulation did actually occur when we selected random 
samples from a population with P = 0.40. Results less than 
0.40 support the alternative hypothesis but to varying 
degrees. To provide enough evidence to reject the null 
hypothesis and accept the alternative hypothesis, results 
have to be smaller than 0.40 and “rare.” When we set the 
significance level at 5% (α = 0.05), we agree to view results 
that occur less than 5% of the time as “rare enough” to 
question whether the sample came from the population 
described by the null. So we reject the null hypothesis and 
accept the alternative. If we set the significance level at 10% 
(α = 0.10), we have changed the definition of rare. As you 
can see, different significance levels can lead to different 
conclusions. 

Here are our conclusions for the two different levels of 
significance. 

At the 5% level, our poll results are not statistically 
significant (P-value = 0.078). We conclude that white male 
support for Obama will not be less than 40% in 2012. (Note: 
This statement says we do not have enough evidence to 
accept Ha. Because Ha is related to the claim or hunch that 
motivated our investigation, we state our conclusion in 
terms of Ha.) 

At the 10% level, our poll results are statistically 
significant (P-value = 0.078). We conclude that white male 
support for Obama will be less than 40% in 2012. (Note: This 
statement says we have enough evidence to accept Ha. 
Again, the conclusion is stated in terms of Ha.) 
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How Do You Choose a Level of Significance? 

Remember that the purpose of the hypothesis test is to describe 
the degree of evidence that the sample provides against the null 
hypothesis. The P-value does this. How small a P-value is convincing 
evidence? It depends on the situation and the opinions of the people 
who use the hypothesis test to make a decision. If rejecting the 
null hypothesis will be controversial or expensive, then the users 
of the test results may want to use a smaller level of significance 
than we did. For this reason, we always report the P-value with 
our conclusions so that the people who use the results of the test 
can determine if the P-value is strong enough evidence for their 
purpose. 

Later we discuss other considerations for choosing a level of 
significance. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=162 
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140. Hypothesis Testing (5 of 
5) 

 

Learning Objectives 

• Recognize type I and type II errors. 

What Can Go Wrong: Two Types of Errors 

Statistical investigations involve making decisions in the face of 
uncertainty, so there is always some chance of making a wrong 
decision. In hypothesis testing, two types of wrong decisions can 
occur. 

If the null hypothesis is true, but we reject it, the error is a type I
error. 

If the null hypothesis is false, but we fail to reject it, the error is a 
type II error. 

The following table summarizes type I and II errors. 
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Comment 

Type I and type II errors are not caused by mistakes. These errors 
are the result of random chance. The data provide evidence for a 
conclusion that is false. It’s no one’s fault! 

Example 

Data Use on Smart Phones 

 

In a previous example, we looked at a hypothesis test 
about data usage on smart phones. The researcher 
investigated the claim that the mean data usage for all 
teens is greater than 62 MBs. The sample mean was 75 MBs. 
The P-value was approximately 0.023. In this situation, the 
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P-value is the probability that we will get a sample mean of 
75 MBs or higher if the true mean is 62 MBs. 

Notice that the result (75 MBs) isn’t impossible, only very 
unusual. The result is rare enough that we question 
whether the null hypothesis is true. This is why we reject 
the null hypothesis. But it is possible that the null 
hypothesis hypothesis is true and the researcher happened 
to get a very unusual sample mean. In this case, the result is 
just due to chance, and the data have led to a type I error: 
rejecting the null hypothesis when it is actually true. 

Example 

White Male Support for Obama in 2012 

In a previous example, we conducted a hypothesis test 
using poll results to determine if white male support for 
Obama in 2012 will be less than 40%. Our poll of white 
males showed 35% planning to vote for Obama in 2012. 
Based on the sampling distribution, we estimated the P-
value as 0.078. In this situation, the P-value is the 
probability that we will get a sample proportion of 0.35 or 
less if 0.40 of the population of white males support 
Obama. 

At the 5% level, the poll did not give strong enough 
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evidence for us to conclude that less than 40% of white 
males will vote for Obama in 2012. 

Which type of error is possible in this situation? If, in 
fact, it is true that less than 40% of this population support 
Obama, then the data led to a type II error: failing to reject 
a null hypothesis that is false. In other words, we failed to 
accept an alternative hypothesis that is true. 

We definitely did not make a type I error here because a 
type I error requires that we reject the null hypothesis. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=163 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=163 

What Is the Probability That We Will Make a 
Type I Error? 

If the significance level is 5% (α = 0.05), then 5% of the time we will 
reject the null hypothesis (when it is true!). Of course we will not 
know if the null is true. But if it is, the natural variability that we 
expect in random samples will produce rare results 5% of the time. 
This makes sense because we assume the null hypothesis is true 
when we create the sampling distribution. We look at the variability 
in random samples selected from the population described by the 
null hypothesis. 

Similarly, if the significance level is 1%, then 1% of the time sample 
results will be rare enough for us to reject the null hypothesis 
hypothesis. So if the null hypothesis is actually true, then by chance 
alone, 1% of the time we will reject a true null hypothesis. The 
probability of a type I error is therefore 1%. 

In general, the probability of a type I error is α. 
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What Is the Probability That We Will Make a 
Type II Error? 

The probability of a type I error, if the null hypothesis is true, is 
equal to the significance level. The probability of a type II error is 
much more complicated to calculate. We can reduce the risk of a 
type I error by using a lower significance level. The best way to 
reduce the risk of a type II error is by increasing the sample size. 
In theory, we could also increase the significance level, but doing so 
would increase the likelihood of a type I error at the same time. We 
discuss these ideas further in a later module. 

Learn By Doing 

A Fair Coin 

In the long run, a fair coin lands heads up half of the time. 
(For this reason, a weighted coin is not fair.) We conducted 
a simulation in which each sample consists of 40 flips of a 
fair coin. Here is a simulated sampling distribution for the 
proportion of heads in 2,000 samples. Results ranged from 
0.25 to 0.75. 
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https://assessments.lumenlearning.com/assessments/
3910 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=163 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=163 
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Comment 

In general, if the null hypothesis is true, the significance level gives 
the probability of making a type I error. If we conduct a large 
number of hypothesis tests using the same null hypothesis, then, 
a type I error will occur in a predictable percentage (α) of the 
hypothesis tests. This is a problem! If we run one hypothesis test 
and the data is significant at the 5% level, we have reasonably good 
evidence that the alternative hypothesis is true. If we run 20 
hypothesis tests and the data in one of the tests is significant at the 
5% level, it doesn’t tell us anything! We expect 5% of the tests (1 in 
20) to show significant results just due to chance. 

776  |  Hypothesis Testing (5 of 5)



Example 

Cell Phones and Brain Cancer 

 

The following is an excerpt from a 1999 New York Times
article titled “Cell phones: questions but no answers,” as 
referenced by David S. Moore in Basic Practice of Statistics 
(4th ed., New York: W. H. Freeman, 2007): 

A hospital study that compared brain cancer patients 
and a similar group without brain cancer found no 
statistically significant association between cell phone 
use and a group of brain cancers known as gliomas. 
But when 20 types of glioma were considered 
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separately, an association was found between cell 
phone use and one rare form. Puzzlingly, however, this 
risk appeared to decrease rather than increase with 
greater mobile phone use. 

This is an example of a probable type I error. Suppose we 
conducted 20 hypotheses tests with the null hypothesis 
“Cell phone use is not associated with cancer” at the 5% 
level. We expect 1 in 20 (5%) to give significant results by 
chance alone when there is no association between cell 
phone use and cancer. So the conclusion that this one type 
of cancer is related to cell phone use is probably just a 
result of random chance and not an indication of an 
association. 

Click here to see a fun cartoon that illustrates this same idea. 

Learn By Doing 

How Many People Are Telepathic? 

Telepathy is the ability to read minds. Researchers used 
Zener cards in the early 1900s for experimental research 
into telepathy. 
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In a telepathy experiment, the “sender” looks at 1 of 5 
Zener cards while the “receiver” guesses the symbol. This is 
repeated 40 times, and the proportion of correct responses 
is recorded. Because there are 5 cards, we expect random 
guesses to be right 20% of the time (1 out of 5) in the long 
run. So in 40 tries, 8 correct guesses, a proportion of 0.20, 
is common. But of course there will be variability even 
when someone is just guessing. Thirteen or more correct in 
40 tries, a proportion of 0.325, is statistically significant at 
the 5% level. When people perform this well on the 
telepathy test, we conclude their performance is not due to 
chance and take it as an indication of the ability to read 
minds. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=163 

In the next section, “Hypothesis Test for a Population Proportion,” 
we learn the details of hypothesis testing for claims about a 
population proportion. Before we get into the details, we want to 
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step back and think more generally about hypothesis testing. We 
close our introduction to hypothesis testing with a helpful analogy. 

A Courtroom Analogy for Hypothesis Tests 

When a defendant stands trial for a crime, he or she is innocent until 
proven guilty. It is the job of the prosecution to present evidence 
showing that the defendant is guilty beyond a reasonable doubt. It 
is the job of the defense to challenge this evidence to establish 
a reasonable doubt. The jury weighs the evidence and makes a 
decision. 

When a jury makes a decision, it has only two possible verdicts: 

• Guilty: The jury concludes that there is enough evidence to 
convict the defendant. The evidence is so strong that there is 
not a reasonable doubt that the defendant is guilty. 

• Not Guilty: The jury concludes that there is not enough 
evidence to conclude beyond a reasonable doubt that the 
person is guilty. Notice that they do not conclude that the 
person is innocent. This verdict says only that there is not 
enough evidence to return a guilty verdict. 

How is this example like a hypothesis test? 
The null hypothesis is “The person is innocent.” The alternative 

hypothesis is “The person is guilty.” The evidence is the data. In a 
courtroom, the person is assumed innocent until proven guilty. In a 
hypothesis test, we assume the null hypothesis is true until the data 
proves otherwise. 

The two possible verdicts are similar to the two conclusions that 
are possible in a hypothesis test. 

Reject the null hypothesis: When we reject a null hypothesis, we 
accept the alternative hypothesis. This is like a guilty verdict. The 
evidence is strong enough for the jury to reject the assumption of 
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innocence. In a hypothesis test, the data is strong enough for us to 
reject the assumption that the null hypothesis is true. 

Fail to reject the null hypothesis: When we fail to reject the 
null hypothesis, we are delivering a “not guilty” verdict. The jury 
concludes that the evidence is not strong enough to reject the 
assumption of innocence, so the evidence is too weak to support a 
guilty verdict. We conclude the data is not strong enough to reject 
the null hypothesis, so the data is too weak to accept the alternative 
hypothesis. 

How does the courtroom analogy relate to type I and type II errors? 
Type I error: The jury convicts an innocent person. By analogy, 

we reject a true null hypothesis and accept a false alternative 
hypothesis. 

Type II error: The jury says a person is not guilty when he or she 
really is. By analogy, we fail to reject a null hypothesis that is false. 
In other words, we do not accept an alternative hypothesis when it 
is really true. 

 

Let’s Summarize 

In this section, we introduced the four-step process of hypothesis 
testing: 

Step 1: Determine the hypotheses. 

• The hypotheses are claims about the population(s). 
• The null hypothesis is a hypothesis that the parameter equals a 

specific value. 
• The alternative hypothesis is the competing claim that the 

parameter is less than, greater than, or not equal to the 
parameter value in the null. The claim that drives the statistical 
investigation is usually found in the alternative hypothesis. 
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Step 2: Collect the data. 
Because the hypothesis test is based on probability, random 

selection or assignment is essential in data production. 
Step 3: Assess the evidence. 

• Use the data to find a P-value. 
• The P-value is a probability statement about how unlikely the 

data is if the null hypothesis is true. 
• More specifically, the P-value gives the probability of sample 

results at least as extreme as the data if the null hypothesis is 
true. 

Step 4: Give the conclusion. 

• A small P-value says the data is unlikely to occur if the null 
hypothesis is true. We therefore conclude that the null 
hypothesis is probably not true and that the alternative 
hypothesis is true instead. 

• We often choose a significance level as a benchmark for 
judging if the P-value is small enough. If the P-value is less 
than or equal to the significance level, we reject the null 
hypothesis and accept the alternative hypothesis instead. 

• If the P-value is greater than the significance level, we say we 
“fail to reject” the null hypothesis. We never say that we 
“accept” the null hypothesis. We just say that we don’t have 
enough evidence to reject it. This is equivalent to saying we 
don’t have enough evidence to support the alternative 
hypothesis. 

• Our conclusion will respond to the research question, so we 
often state the conclusion in terms of the alternative 
hypothesis. 

Inference is based on probability, so there is always uncertainty. 
Although we may have strong evidence against it, the null 
hypothesis may still be true. If this is the case, we have a type I error. 
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Similarly, even if we fail to reject the null hypothesis, it does not 
mean the alternative hypothesis is false. In this case, we have a type 
II error. These errors are not the result of a mistake in conducting 
the hypothesis test. They occur because of random chance. 

Hypothesis Testing (5 of 5)  |  783



141. Introduction: Hypothesis 
Test for a Population 
Proportion 

What you’ll learn to do: Conduct a hypothesis 
test for a population proportion. 

LEARNING OBJECTIVES 

• Recognize when a situation calls for testing a 
hypothesis about a population proportion. 

• Conduct a hypothesis test for a population 
proportion. State a conclusion in context. 

• Interpret the P-value as a conditional probability in 
the context of a hypothesis test about a population 
proportion. 

• Distinguish statistical significance from practical 
importance. 
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142. Hypothesis Test for a 
Population Proportion (1 of 3) 

 

Learning Objectives 

• Recognize when a situation calls for testing a 
hypothesis about a population proportion. 

• Conduct a hypothesis test for a population 
proportion. State a conclusion in context. 

Introduction 

In the previous section, we introduced the concept of hypothesis 
testing. In a hypothesis test, we test competing claims about a 
population parameter or the difference between two population 
parameters. 

We looked at four hypothesis testing situations: 

• Testing a claim about a single population proportion. 
• Testing a claim about a single population mean. 
• Testing a claim about the difference between two population 

proportions. 
• Testing a claim about the difference between two population 

means. 
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Although we follow the four steps we examined in the previous 
section, “Hypothesis Testing,” for each of these situations, the 
specifics for each test are different. In this section, we look at 
the hypothesis test for a single population proportion. When we 
conduct a test about a population proportion, we are working with 
a categorical variable. Later in the course, after we have learned a 
variety of hypothesis tests, we will need to be able to identify which 
test is appropriate for which situation. Identifying the variable as 
categorical or quantitative is an important component of choosing 
an appropriate hypothesis test. We also have to distinguish between 
testing a claim about a population proportion and estimating a 
population proportion. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=165 

Once we know that we are dealing with a single population 
proportion, we can conduct the hypothesis test. Recall that the first 
step of a hypothesis test is to determine the hypotheses. In the 
previous section, our hypotheses were in words. In this section, we 
use symbols. Recall that the symbol for the population proportion is 
p. 
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Example 

Health Insurance Coverage 

 

According to the Government Accountability Office, 80% 
of all college students ages 18 to 23 had health insurance 
coverage in 2006. The Patient Protection and Affordable 
Care Act passed in 2010 allowed young people under age 26 
to stay on their parents’ health insurance policy. Has the 
proportion of college students ages 18 to 23 who have 
health insurance increased since 2006? A survey of 800 
randomly selected college students ages 18 to 23 indicated 
that 83% of them had health insurance coverage. 

H0: p = 0.80 (No change; the proportion of college 
students ages 18 to 23 who have health insurance is 
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still 80%.) 
Ha: p > 0.80 (The proportion of college students 

ages 18 to 23 who have health insurance is now 
greater than 80%.) 

The results of the survey do not affect our hypotheses. 
We use the results to determine whether to reject the null 
hypothesis in favor of the alternative hypothesis. 
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Example 

Internet Access 

 

According to the Kaiser Family Foundation, 84% of U.S. 
children ages 8 to 18 had Internet access at home as of 
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August 2009. Researchers wonder if this percentage has 
changed since then. They survey 500 randomly selected 
children ages 8 to 18 and find that 430 of them have 
Internet access at home. The research question helps us 
form our hypotheses: 

H0: p = 0.84 (No change; the proportion of children 
with Internet access at home is the same.) 

Ha: p ≠ 0.84 (The proportion of children with 
Internet access at home has changed since 2009.) 

Again, the results of the survey do not affect our 
hypotheses. 
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Example 

Jury Selection 

 

Jefferson Parish is a suburb of New Orleans, Louisiana. Its 
population is about 23% African American. Is there 
evidence that African Americans are underrepresented on 
juries in murder trials in Jefferson Parish? According to a 
New York Times article (June 4, 2007), there were 18 murder 
trials in Jefferson Parish between 1986 and 2007 in which 
the ethnicity of the jurors was known. Ten of the juries had 
no black jurors, 7 juries had 1 black juror, and 1 jury had 2 
black jurors. The research question helps us to form our 
hypotheses: 

H0: p = 0.23 (No difference; the proportion of 
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African Americans on juries in murder trials is the 
same as the proportion of African Americans in the 
population.) 

Ha: p < 0.23 (The proportion of African Americans 
on juries in murder trials is less than the proportion 
of African Americans in the population.) 

Summary of Hypotheses 

As a reminder, the null hypothesis is always a statement of equality. 
The alternative hypothesis is always a statement of inequality, using 
<, >, or ≠. So hypotheses take the form: 

H0: p = p0 

Ha: p < p0 or p > p0 or p ≠ p0 

We use p0 to represent the proportion from the null hypothesis. 

College Students and Federal Grants 

According to the American Association of Community Colleges, 23% 
of community college students receive federal grants. The California 
Community College Chancellor’s Office anticipates that the 
percentage is smaller for California community college students. 
They collect a sample of 1,000 community college students in 
California and find that 210 received federal grants. 
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143. Hypothesis Test for a 
Population Proportion (2 of 3) 

 

Learning Objectives 

• Conduct a hypothesis test for a population 
proportion. State a conclusion in context. 

On the previous page, we looked at determining hypotheses for 
testing a claim about a population proportion. On this page, we look 
at how to determine P-values. 

As we learned earlier, the P-value for a hypothesis test for a 
population proportion comes from a normal model for the sampling 
distribution of sample proportions. The normal distribution is an 
appropriate model for this sampling distribution if the expected 
number of success and failures are both at least 10. Using the 
symbols for the population proportion and sample size, a normal 
curve is a reasonable model if the following conditions are met: np ≥ 
10 and n(1 − p) ≥ 10. 
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Example 

Health Insurance Coverage 

Recall this example from the previous page. According to 
the Government Accountability Office, 80% of all college 
students (ages 18 to 23) had health insurance in 2006. The 
Patient Protection and Affordable Care Act of 2010 allowed 
young people under age 26 to stay on their parents’ health 
insurance policy. Has the proportion of college students 
(ages 18 to 23) who have health insurance increased since 
2006? A survey of 800 randomly selected college students 
(ages 18 to 23) indicated that 83% of them had health 
insurance. Use a 0.05 level of significance. 

Step 1: Determine the hypotheses. 

We did this on the previous page. The hypotheses are: 

H0: p = 0.80 
Ha: p > 0.80 

where p is the proportion of college students ages 18 to 
23 who have health insurance now. 

Step 2: Collect the data. 

In this random sample of 800 college students, 83% have 
health insurance. If 80% of all college students have health 
insurance, is this 3% difference statistically significant or 
due to chance? We need to find a P-value to answer this 
question. We must determine if we can use this data in a 
hypothesis test. 
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First note that the data are from a random sample. That is 
essential. Now we need to determine if a normal model is a 
good fit for the sampling distribution. Since we assume that 
the null hypothesis is true, we build the sampling 
distribution with the assumption that 0.80 is the population 
proportion. We check the following conditions, using 0.80 
for p: 

Because these are both more than 10, we can use the 
normal model to find the P-value. 

Step 3: Assess the evidence. 

Now that we know that the normal distribution is an 
appropriate model for the sampling distribution, our next 
goal is to determine the P-value. The first step is to 
determine the z-score for the observed sample proportion 
(the data). 

The sample proportion is 0.83. Recall from Linking 
Probability to Statistical Inference that the formula for the 
z-score of a sample proportion is as follows: 

For this example, we calculate: 

This z-score is called the test statistic. It tells us the 
sample proportion of 0.83 is about 2.12 standard errors 
above the population proportion given in the null 
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hypothesis. We use this statistic to find the P-value. The P-
value describes the strength of the evidence against the 
null hypothesis. 

We use the simulation that we first saw in Probability and 
Probability Distributions to determine the P-value. The P-
value is a probability that describes the likelihood of the 
data if the null hypothesis is true. More specifically, the P-
value is the probability that sample results are as extreme 
as or more extreme than the data if the null hypothesis is 
true. The phrase “as extreme as or more extreme than” 
means farther from the center of the sampling distribution 
in the direction of the alternative hypothesis. 

In this situation, we want the area to the right of 0.83 
because the alternative hypothesis is a “greater-than” 
statement. The P-value, in this case, is the probability of 
getting a sample proportion equal to or greater than 0.83. 
Since we are using the standard normal curve to find 
probabilities, the P-value is the area to the right of the Z = 
2.12. 

 

We can find this area with a simulation or other 
technology. 
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The P-value is approximately 0.0170. Thus, the probability 
that a random sample proportion is at least as large as 0.83 
is about 0.017 (if the population proportion is actually 0.80). 
If the null hypothesis is true, we observe sample 
proportions this high or higher only about 1.7% of the time. 

The P-value is our evidence of statistical significance. It is 
a measure of whether random chance can explain the 
deviation of the data from the null hypothesis. 

Step 4: State a conclusion. 

To determine our conclusion, we compare the P-value to 
the level of significance, α = 0.05. If our data are predicted 
to occur by chance less than 5% of the time, we have 
reason to reject the null hypothesis and accept the 
alternative. Since our P-value of 0.017 is less than 0.05, we 
reject the null hypothesis. We state our conclusion in terms 
of the alternative hypothesis. We also state it in context. 
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The data from this study provides strong evidence that 
the proportion of all college students who have health 
insurance is now greater than 0.80 (P-value = 0.017). The 
0.03 increase in the proportion who have health insurance 
since 2008 is statistically significant at the 0.05 level. 

Alternatively, we can give the conclusion using the 
percentage rather than the decimal: 

The data from this study provides strong evidence that 
the percentage of all college students who have health 
insurance is now greater than 80% (P-value = 0.017). The 
3% increase in the percentage who have health insurance 
since 2008 is statistically significant at the 5% level. 

Important Note 

A hypothesis test can be one-tailed or two-tailed. The previous 
example was a one-tailed hypothesis test. The P-value was the area 
of the right tail. If the inequality in the alternative hypothesis is < or 
>, the test is one-tailed. If the inequality is ≠, the test is two-tailed. 
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p0, we have a right-tailed P-value so the P-value is an area on the 
right tail of the curve. When Ha has p ≠ p0, we have a two-tailed P-
value. So, the P-value is twice the area of one tail.” width=”401″ 
height=”296″> 

Example 

Internet Access 

Recall the following example from the previous page. According to 
the Kaiser Family Foundation, 84% of U.S. children iages 8 to 18 had 
Internet access at home as of August 2009. Researchers wonder if 
this percentage has changed since then. They survey 500 randomly 
selected children (ages 8 to 18) and find that 430 of them have 
Internet access at home. 

Use a level of significance of α = 0.05 for this hypothesis test. 
Step 1: Determine the hypotheses. 
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H0: p = 0.84 
Ha: p ≠ 0.84 

where p is the proportion of children ages 8 to 18 with Internet 
access at home now. 

Step 2: Collect the data. 
Our sample is random, so there is no problem there. Again, we 

want to determine whether the normal model is a good fit for 
the sampling distribution of sample proportions. Based on the null 
hypothesis, we will use 0.84 as our population proportion to check 
the conditions. 

Because these are both more than 10, we can use the normal 
model to find the P-value. 

Step 3: Assess the evidence. 
Since we can use the normal model, we need to calculate the 

z-test statistic for the sample proportion. We first calculate the 
sample proportion. 

Next, we calculate our Z-score, the test statistic: 

The sample proportion of 0.86 is about 1.22 standard errors above 
the population proportion given in the null hypothesis. Now we 
calculate the P-value. This is where the two-tailed nature of the 
test is important. The P-value is the probability of seeing a sample 
proportion at least as extreme as the one observed from the data if 
the null hypothesis is true. 

In the previous example, only sample proportions higher than the 
null proportion were evidence in favor of the alternative hypothesis. 
In this example, any sample proportion that differs from 0.84 is 
evidence in favor of the alternative. Statistically significant 
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differences are at least as extreme as the difference we see in the 
data. We want to determine the probability that the difference in 
either direction (above or below 0.84) is at least as large as the 
difference seen in the data, so we include sample proportions at or 
above 0.86 and sample proportions at or below 0.82. For this reason, 
we look at the area in both tails. Our simulation shows one tail, so 
we have to double this area. 

 
The area above the test statistic of 1.22 is about 0.11. We double 

this area to include the area in the left tail, below Z = −1.22. This gives 
us a P-value of approximately 0.22. 

Our sample proportion was 0.02 above the population proportion 
from the null hypothesis. In a sample of size 500, we would observe 
a sample proportion 0.02 or more away from 0.84 about 22% of the 
time by chance alone. 

Step 4: State a conclusion. 
Again we compare the P-value to the level of significance, α = 0.05. 

In this case, the P-value of 0.22 is greater than 0.05, which means 
we do not have enough evidence to reject the null hypothesis. A 

Hypothesis Test for a Population Proportion (2 of 3)  |  801



sample result that could occur 22% of the time by chance alone 
is not statistically significant. Now we can state the conclusion in 
terms of the alternative hypothesis. 

The data from this study does not provide evidence that is strong 
enough to conclude that the proportion of all children ages 8 to 
18 who have Internet access at home has changed since 2009 (P-
value = 0.22). The 2% change observed in the data is not statistically 
significant. These results can be explained by predictable variation 
in random samples. 

A Note about the Conclusion 

In the conclusion above, we did not have enough evidence to reject 
the null hypothesis. As we noted in “Hypothesis Testing,” failing to 
reject the null hypothesis does not mean the null hypothesis is true. 

In the case of the previous example, it is possible that the 
proportion of children who have Internet access at home has 
changed. But the data we gathered did not provide the evidence to 
detect that the proportion had changed significantly. 

Researchers often note improvements that could be made in their 
research and suggest follow-up research that might be done. In our 
example, a second sample with a larger sample size might provide 
the evidence needed to reject the null hypothesis. 

The important thing to keep in mind is that at the end of a 
hypothesis test, we never say that the null hypothesis is true. 
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Learn By Doing 

California College Students Who Drink 

According to the Centers for Disease Control and 
Prevention, 60% of all American adults ages 18 to 24 
currently drink alcohol. Is the proportion of California 
college students who currently drink alcohol different from 
the proportion nationwide? A survey of 450 California 
college students indicates that 66% currently drink alcohol. 
The hypotheses were: 

H0: p = 0.60 
Ha: p ≠ 0.60 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

Click here to open the simulation 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

Learn By Doing 

Coin Flips 

Recall the scenario from the previous page. A psychic 
claims to be able to predict the outcome of coin flips before 
they happen. Someone who guesses randomly will predict 
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about half of coin flips correctly. In 100 flips, the psychic 
correctly predicts 57 flips. Do the results of this test 
indicate that the psychic does better than random 
guessing? The hypotheses are 

H0: p = 0.50 
Ha: p > 0.50 

where p is the proportion of correct coin flip predictions 
by the psychic. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

Click here to open the simulation 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=166 
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144. Hypothesis Test for a 
Population Proportion (3 of 3) 

 

Learning Objectives 

• Conduct a hypothesis test for a population 
proportion. State a conclusion in context. 

• Interpret the P-value as a conditional probability in 
the context of a hypothesis test about a population 
proportion. 

• Distinguish statistical significance from practical 
importance. 

• From a description of a study, evaluate whether the 
conclusion of a hypothesis test is reasonable. 

More about the P-Value 

The P-value is a probability that describes the likelihood of the data 
if the null hypothesis is true. More specifically, the P-value is the 
probability that sample results are as extreme as or more extreme 
than the data if the null hypothesis is true. The phrase “as extreme 
as or more extreme than” means farther from the center of the 
sampling distribution in the direction of the alternative hypothesis. 

More generally, we view the P-value a description of the strength 
of the evidence against the null hypothesis and in support of the 
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alternative hypothesis. But the P-value is a probability about sample 
results, not about the null or alternative hypothesis. 

One More Note about P-Values and the 
Significance Level 

You may wonder why 5% is often selected as the significance level 
in hypothesis testing and why 1% is also a commonly used level. 
It is largely due to just convenience and tradition. When Ronald 
Fisher (one of the founders of modern statistics) published one of 
his tables, he used a mathematically convenient scale that included 
5% and 1%. Later, these same 5% and 1% levels were used by other 
people, in part just because Fisher was so highly esteemed. But 
mostly, these are arbitrary levels. 

The idea of selecting some sort of relatively small cutoff was 
historically important in the development of statistics. But it’s 
important to remember that there is really a continuous range of 
increasing confidence toward the alternative hypothesis, not a 
single all-or-nothing value. There isn’t much meaningful difference, 
for instance, between the P-values 0.049 and 0.051, and it would be 
foolish to declare one case definitely a “real” effect and the other 
case definitely a “random” effect. In either case, the study results 
are roughly 5% likely by chance if there’s no actual effect. 

Whether such a P-value is sufficient for us to reject a particular 
null hypothesis ultimately depends on the risk of making the wrong 
decision and the extent to which the hypothesized effect might 
contradict our prior experience or previous studies. 
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Example 

Sample Size and Hypothesis Testing 

Consider our earlier example about teenagers and 
Internet access. According to the Kaiser Family Foundation, 
84% of U.S. children ages 8 to 18 had Internet access at 
home as of August 2009. Researchers wonder if this 
number has changed since then. The hypotheses we tested 
were: 

H0: p = 0.84 
Ha: p ≠ 0.84 

The original sample consisted of 500 children, and 86% 
of them had Internet access at home. The P-value was 
about 0.22, which was not strong enough to reject the null 
hypothesis. There was not enough evidence to show that 
the proportion of all U.S. children ages 8 to 18 have Internet 
access at home. 

Suppose we sampled 2,000 children and the sample 
proportion was still 86%. Our test statistic would be Z ≈ 
2.44, and our P-value would be about 0.015. The larger 
sample size would allow us to reject the null hypothesis 
even though the sample proportion was the same. 
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Why does this happen? Larger samples vary less, so a 
sample proportion of 0.86 is more unusual with larger 
samples than with smaller samples if the population 
proportion is really 0.84. This means that if the alternative 
hypothesis is true, a larger sample size will make it more 
likely that we reject the null. Therefore, we generally prefer 
a larger sample as we have seen previously. 

Drawing Conclusions from Hypothesis Tests 

It is tempting to get involved in the details of a hypothesis test 
without thinking about how the data was collected. Whether we 
are calculating a confidence interval or performing a hypothesis 
test, the results are meaningless without a properly designed study. 
Consider the following exercises about how data collection can 
affect the results of a study. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=167 

 

Let’s Summarize 

In this section, we looked at the four steps of a hypothesis test as 
they relate to a claim about a population proportion. 

Step 1: Determine the hypotheses. 

• The hypotheses are claims about the population proportion, p. 
• The null hypothesis is a hypothesis that the proportion equals 

a specific value, p0. 
• The alternative hypothesis is the competing claim that the 

parameter is less than, greater than, or not equal to p0. 

Step 2: Collect the data. 
Since the hypothesis test is based on probability, random 

selection or assignment is essential in data production. Additionally, 
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we need to check whether the sample proportion can be np ≥ 10 and 
n(1 − p) ≥ 10. 

Step 3: Assess the evidence. 

• Determine the test statistic which is the z-score for the sample 

proportion. The formula is: 

• Use the test statistic, together with the alternative hypothesis 
to determine the P-value. You can use a standard normal table 
(or Z-table) or technology (such as the simulations on the 
second page of this topic) to find the P-value. 

• If the alternative hypothesis is greater than, the P-value is the 
area to the right of the test statistic. If the alternative 
hypothesis is less than, the P-value is the area to the left of the 
test statistic. If the alternative hypothesis is not equal to, the 
P-value is equal to double the tail area beyond the test 
statistic. 

Step 4: Give the conclusion. 

• A small P-value says the data is unlikely to occur if the null is 
true. If the P-value is less than or equal to the significance 
level, we reject the null hypothesis and accept the alternative 
hypothesis instead. 

• If the P-value is greater than the significance level, we say we 
“fail to reject” the null hypothesis. We never say that we 
“accept” the null hypothesis. We just say that we don’t have 
enough evidence to reject it. This is equivalent to saying we 
don’t have enough evidence to support the alternative 
hypothesis. 

• We write the conclusion in the context of the research 
question. Our conclusion is usually a statement about the 
alternative hypothesis (we accept Ha or fail to accept Ha) and 
should include the P-value. 
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Other Hypothesis Testing Notes 

Remember that the P-value is the probability of seeing a sample 
proportion as extreme as the one observed from the data if the null 
hypothesis is true. The probability is about the random sample, not 
about the null or alternative hypothesis. 

A larger sample size makes it more likely that we will reject the 
null hypothesis if the alternative is true. Another way of thinking 
about this is that increasing the sample size will decrease the 
likelihood of a type II error. Recall that a type II error is failing to 
reject the null hypothesis when the alternative is true. 

Increasing the sample size can have the unintended effect of 
making the test sensitive to differences so small they don’t matter. 
A statistically significant difference is one large enough that it is 
unlikely to be due to sampling variability alone. Even a difference 
so small that it is not important can be statistically significant if the 
sample size is big enough. 

Finally, remember the phrase “garbage in, garbage out.” If the 
data collection methods are poor, then the results of a hypothesis 
test are meaningless. No statistical methods can create useful 
information if our data comes from convenience or voluntary 
response samples. Additionally, the results of a hypothesis test apply 
only to the population from whom the sample was chosen. 
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145. Putting It Together: 
Inference for One Proportion 

 

Let’s Summarize 

In Inference for One Proportion, we learned two inference 
procedures to draw conclusions about a population proportion: 

• A confidence interval when our goal is to estimate a population 
proportion. 

• A hypothesis test when our goal is to test a claim about a 
population proportion. 

Confidence Interval for Estimating a Population 
Proportion 

• A confidence interval estimates the population proportion with 
a range of possible values. The interval is based on a sample 
proportion and a margin of error. 

• Every confidence interval has a confidence level associated 
with it. The confidence level is a probability statement. It tells 
us the chance that a confidence interval, with a specific 
margin of error, contains the population proportion. But we 
can never determine if a specific interval does or does not 
contain the population proportion. We also cannot determine 
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the probability that the population proportion lies in a specific 
interval. We can only say that in the long run the confidence 
level describes the percentage of the confidence intervals that 
will estimate the population proportion within a specific 
margin of error. 

• We can calculate a confidence interval for a population 
proportion when we can use a normal distribution to model 
the long-run behavior of sample proportions. We can use a 
normal distribution model when there are at least 10 observed 
successes and 10 observed failures. 

• We calculate the confidence interval for a population 
proportion using this formula: 

where Zc depends on the confidence level. The part of the formula 
after the ± is the margin of error. The most common confidence 
levels are 90%, 95%, and 99%. The critical z-scores are 1.65, 1.96, 
and 2.576. 

• The margin of error comes from the standard error in the 
sampling distribution. Sample proportions from larger sample 
sizes have less variability, so the standard error is smaller. 
Therefore, confidence intervals based on larger sample sizes 
will have a smaller margin of error. This fits our intuition that 
larger samples will give more accurate estimates of the 
population proportion. 

• A higher level of confidence makes us more confident that the 
interval contains the population proportion because the 
interval is wider. This also means that the margin of error is 
larger. 
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Hypothesis Tests in General: 

Hypothesis tests consist of four steps, which apply to all the 
hypothesis tests we will do in this course. 

Step 1: Determine the hypotheses. 
The hypotheses are statements about the parameter(s) in 

question. The null hypothesis, H0, is always a statement of equality 
and usually means no change or difference. The alternative 
hypothesis, Ha, is always an inequality, either <, >, or ≠, and is based 
on the research question. 

Step 2: Collect the data. 
The data must come from a random sample that is representative 

of the population in question. 
Step 3: Assess the evidence. 
The P-value is the evidence. The P-value is the probability that 

we would get sample results at least as extreme as those observed 
if the null hypothesis is true. If the P-value is smaller than the 
significance level, the results are unusual enough for us to reject the 
null hypothesis. Otherwise, we “fail to reject” the null hypothesis. 

Step 4: Give the conclusion. 
Our conclusion is stated in terms of the alternative hypothesis. 

Either there is or there is not enough evidence to say that the 
alternative hypothesis is true. We always use the context of the 
problem in the conclusion and always include the P-value. Finally, 
we never say that the null hypothesis is true, only that we reject or 
fail to reject it. 

Hypothesis Test for a Population Proportion: 

For the four steps, the following are specific to hypothesis testing 
for a population proportion. 

Step 1: Determine the hypotheses. 
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The hypotheses for a test about a population proportion are 
stated in terms of the p. Here p0 is a number to which we compare 
the population proportion. 

H0: p = p0 

Ha: p < p0 or p > p0 or p ≠ p0 

Step 2: Collect the data. 
We also check at this point that np ≥ 10 and n(1 − p) ≥ 10, where p is 

the value from the null hypothesis, p0. If these conditions are true, 
a normal model is a good fit for the sampling distribution of sample 
proportions. We need this model to do the remaining steps in the 
hypothesis test. 

Step 3: Assess the evidence. 
We calculate the test statistic (the z-score) for our sample 

proportion. We use the test statistic to determine the P-value, using 
a standard normal curve. We can do this using a Z-table or 
technology. We used simulations or statistical software in our work. 
As always, if the P-value is smaller than the significance level, the 
results are unusual enough for us to reject the null hypothesis. 
Otherwise, we “fail to reject” the null hypothesis. 

Step 4: Give the conclusion. 
See the information about stating conclusions for the general 

hypothesis test. There is nothing to add to this when we test a 
hypothesis about a population proportion. 

Other important notes: 

• In a hypothesis test, we make a decision based on probability, 
so there is uncertainty. A type I error occurs when we reject 
the null hypothesis even though it is true. A type II error 
occurs when we fail to reject the null hypothesis even though 
the alternative hypothesis is true. These errors are due to 
chance: the data from a random sample has led us to a wrong 
conclusion without our knowledge, which can happen even if 
we do all the steps correctly. 
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• A difference may be statistically significant but not practically 
important for decision making. Examining the hypotheses and 
the sample results can help us realize when this happens. 

• For both confidence intervals and hypothesis tests about a 
population proportion, we must make sure that our sample is 
representative of the population. Using bad data to calculate a 
confidence interval or conduct a hypothesis test will give us 
worthless results. 
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146. StatTutor: Cell Phones 

You are now ready to practice what you learned in this module by 
doing a StatTutor exercise. We design StatTutor exercises to help 
you apply what you have learned to a real life data analysis question. 

Instructions: One of the first few screens in StatTutor has a link 
to download the dataset for this StatTutor exercise. When you click 
that link, a pop-up window will appear asking if you want to open 
or save the file. Make sure you click “Save,” which will allow you 
to save the file to your hard drive. Then find the downloaded file 
and double-click it to open it if you’re using R, Minitab, Excel, or 
StatCrunch, or transfer it to your calculator if you’re using the TI 
Calculator. 

 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=169 
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147. Assignment: Hypothesis 
Testing for the Population 
Proportion p 

 
The objectives of this activity are: 
1. To give you guided practice in carrying out a hypothesis test 

about a population proportion. (Note: This hypothesis test is also 
called a z-test for the population proportion.) 

2. To learn how to use statistical software to help you carry out 
the test. 

Background: This activity is based on the results of a recent study 
on the safety of airplane drinking water that was conducted by the 
U.S. Environmental Protection Agency (EPA). A study found that out 
of a random sample of 316 airplanes tested, 40 had coliform bacteria 
in the drinking water drawn from restrooms and kitchens. As a 
benchmark comparison, in 2003 the EPA found that about 3.5% of 
the U.S. population have coliform bacteria-infected drinking water. 
The question of interest is whether, based on the results of this 
study, we can conclude that drinking water on airplanes is more 
contaminated than drinking water in general 

Question 1: 

Let p be the proportion of contaminated drinking water in airplanes. 
Write down the appropriate null and alternative hypotheses. 
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Question 2: 

Based on the collected data, is it safe to use the z-test for p in this 
scenario? Explain. 

Use the following instructions to conduct the z-test for the 
population proportion: 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 3: 

Now that we have established that it is safe to use the Z-test for p 
for our problem, go ahead and carry out the test. Paste the output 
below. 

Question 4: 

Note that, according to the output, the test statistic for this test is 
8.86. Make sure you understand how this was calculated, and give 
an interpretation of its value. 
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Question 5: 

We calculated a P-value of 0 in this test. Interpret what that means, 
and draw your conclusions. 
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PART IX 

CHAPTER 9: INFERENCE 
FOR TWO PROPORTIONS 
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148. Why It Matters: 
Inference for Two 
Proportions 

 

Learning Objectives 

• Recognize when to use a hypothesis test or a 
confidence interval to compare two population 
proportions or to investigate a treatment effect for a 
categorical variable. 

• Determine if a study involving two proportions is 
an experiment or an observational study. 

In previous modules, we learned to make inferences about a 
population proportion. In particular, we learned the following: 

• Random samples vary. When we use a sample proportion to 
make an inference about a population proportion, there is 
uncertainty. For this reason, inference involves probability. 

• Under certain conditions, we can model the variability in 
sample proportions with a normal curve. We use the normal 
curve to make probability-based decisions about population 
values. 

• We can estimate a population proportion with a confidence 
interval. The confidence interval is an actual sample 
proportion with a margin of error. We state our confidence in 
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the accuracy of these intervals using probability. 
• We can test a hypothesis about a population proportion using 

an actual sample proportion. Again, we base our conclusion on 
probability using a P-value. The P-value describes the strength 
of our evidence in rejecting a hypothesis about the population. 

In Inference for Two Proportions, we continue to work with 
categorical data, so we continue to use proportions. But now we 
make inferences that compare two populations (or two treatments). 

As an overview, consider again the Big Picture of Statistics. 

 
Here we discuss the four steps in a statistical investigation for 

situations from Module 9. 

1. Produce Data: Determine what to measure, then collect the 
data. In this module, we collect categorical data from two 
samples. In an observational study, we begin with two 
populations and randomly select a sample from each 
population. In an experiment, we randomly assign individuals 
to two treatments. The use of random selection or random 
assignment allows us to view the samples as independent. This 
means we assume that the variable values from one sample do 
not influence the values for the other sample. 

828  |  Why It Matters: Inference for Two Proportions



2. Exploratory Data Analysis: Analyze and summarize the data. 
We are working with categorical data, so from each sample, we 
compute a sample proportion. To compare the two samples, 
we subtract the proportions. When we conduct inference in 
the next step, our goal is to to determine if the actual 
difference in the sample proportions is significantly different 
from what we expect in random sampling. 

3. Draw a Conclusion: Use data, probability, and statistical 
inference to draw a conclusion about the populations.Our 
approach to inference repeats the reasoning we did in 
Inference for One Proportion. 

◦ We use simulation to observe the behavior of the 
differences in sample proportions when we randomly select 
many, many samples. We create the simulation to reflect a 
claim about the populations. Then we develop a 
probability model to describe the shape, center, and 
spread of the sampling distribution. Of course, we are 
interested in the conditions that allow us to use a normal 
curve. 

◦ We use this model to determine when a given difference is 
unusual in a formal hypothesis test. 

◦ We also construct confidence intervals to estimate the 
difference between two population proportions. As before, 
we make a probability statement about our confidence in 
the accuracy of these intervals. 
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Example 

The Abecedarian Early Intervention 
Project 

In the 1970s, Abecedarian Early Intervention Project 
studied the long-term effects of early childhood education 
for poor children. 

Research question: Does early childhood education 
increase the likelihood of college attendance for poor 
children? 

1. Produce Data: Determine what to measure, then 
collect the data.In this experiment, researchers 
selected 111 high-risk infants on the basis of the 
mothers’ education, family income, and other factors. 
They randomly assigned 57 infants to receive 5 years 
of high-quality preschool. The remaining 54 infants 
were a control group. All children received nutritional 
supplements, social services, and health care to 
control the effects of these confounding factors on 
the outcomes of the experiment. 

2. Exploratory Data Analysis: Analyze and summarize 
the data.By the age of 21 a much higher percentage of 
the treatment group enrolled in college, 42% vs. 20%. 

3. Draw a Conclusion: Use data, probability, and 
statistical inference to draw a conclusion about the 
populations.Is this difference statistically significant? 
In other words, is this difference due to the pre-

830  |  Why It Matters: Inference for Two Proportions



school experience or due to chance? We will test the 
claim that a larger proportion of children who attend 
pre-school will attend college. 

The following figure summarizes this investigation in the 
Big Picture. 
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Learn By Doing 

Health Care for Non-Union and Union Workers 

In a recent study the AFL/CIO selected random samples 
of non-union and union employees. They compared the 
proportion of workers in each sample who had health 
insurance. They found that the proportion of non-union 
workers with health insurance was significantly lower than 
the proportion of union workers with health insurance. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=172 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=172 
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149. Introduction: 
Distribution of Differences in 
Sample Proportions 

What you’ll learn to do: Recognize when to use a 
two population proportion hypothesis test to 
compare two populations/treatment groups. 

LEARNING OBJECTIVES 

• Recognize when to use a hypothesis test or a 
confidence interval to compare two population 
proportions or to investigate a treatment effect for a 
categorical variable. 

• Determine if a study involving two proportions is 
an experiment or an observational study. 

• Describe the sampling distribution of the 
difference between two proportions. 

• Draw conclusions about a difference in population 
proportions from a simulation. 

Introduction: Distribution of
Differences in Sample



150. Distribution of 
Differences in Sample 
Proportions (1 of 5) 

 

Learning Objectives 

• Describe the sampling distribution of the 
difference between two proportions. 

• Draw conclusions about a difference in population 
proportions from a simulation. 

Our goal in this module is to use proportions to compare categorical 
data from two populations or two treatments. 

It’s not about the values – it’s about how they are related! 
In Inference for One Proportion, we learned to estimate and test 

hypotheses regarding the value of a single population proportion. 
Here, in Inference for Two Proportions, the value of the population 
proportions is not the focus of inference. Instead, we want to 
develop tools comparing two unknown population proportions. 

The first step is to examine how random samples from the 
populations compare. In this investigation, we assume we know the 
population proportions in order to develop a model for the sampling 
distribution. This is the same thinking we did in Linking Probability 
to Statistical Inference. In that module, we assumed we knew a 
population proportion. Then we selected random samples from that 
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population. We examined how sample proportions behaved in long-
run random sampling. This is the same approach we take here. 

Example 

Teen Depression 

Most of us get depressed from time to time. Depression 
is a normal part of life. Many people get over those feelings 
rather quickly. But some people carry the burden for weeks, 
months, or even years. For these people, feelings of 
depression can have a major impact on their lives. 
Depression can cause someone to perform poorly in school 
or work and can destroy relationships between relatives 
and friends. 

Research suggests that teenagers in the United States are 
particularly vulnerable to depression. And, among 
teenagers, there appear to be differences between females 
and males. The Christchurch Health and Development 
Study (FERGUSSON, D. M., AND L. J. HORWOOD, “THE 
CHRISTCHURCH HEALTH AND DEVELOPMENT STUDY: REVIEW 
OF FINDINGS ON CHILD AND ADOLESCENT MENTAL HEALTH,” 
AUSTRALIAN AND NEW ZEALAND JOURNAL OF PSYCHIATRY 

35[3]:287–296), which began in 1977, suggests that the 
proportion of depressed females between ages 13 and 18 
years is as high as 26%, compared to only 10% for males in 
the same age group. 

Let’s assume that 26% of all female teens and 10% of all 
male teens in the United States are clinically depressed. In 
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other words, assume that these values are both population 
proportions. 

pf = 0.26 for the population of all female teenagers 
in the United States 

pm = 0.1 for the population of all male teenagers in 
the United States 

Graphically, we can compare these proportion using 
side-by-side ribbon charts: 

 

To compare these proportions, we could describe how 
many times larger one proportion is than the other. Here 
the female proportion is 2.6 times the size of the male 
proportion (0.26/0.10 = 2.6). An easier way to compare the 
proportions is to simply subtract them. This is the approach 
statisticians use. The difference between the female and 
male proportions is 0.16. This is a 16-percentage point 
difference. We write this with symbols as follows: 

Another study, the National Survey of Adolescents 
(KILPATRICK, D., K. RUGGIERO, R. ACIERNO, B. SAUNDERS, H. 
RESNICK, AND C. BEST, “VIOLENCE AND RISK OF PTSD, MAJOR 
DEPRESSION, SUBSTANCE ABUSE/DEPENDENCE, AND 
COMORBIDITY: RESULTS FROM THE NATIONAL SURVEY OF 
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ADOLESCENTS,” JOURNAL OF CONSULTING AND CLINICAL 

PSYCHOLOGY 71[4]:692–700) found a 6% higher rate of 
depression in female teens than in male teens. Suppose that 
this result comes from a random sample of 64 female teens 
and 100 male teens. Let’s assume that 9 of the females are 
clinically depressed compared to 8 of the males. The 
proportion of females who are depressed, then, is 9/64 = 
0.14. The proportion of males who are depressed is 8/100 = 
0.08. The difference between the female and male sample 
proportions is 0.06, as reported by Kilpatrick and 
colleagues. We write this with symbols as follows: 

Of course, we expect variability in the difference between 
depression rates for female and male teens in different 
studies. But does the National Survey of Adolescents suggest 
that our assumption about a 0.16 difference in the 
populations is wrong? Or could the survey results have come 
from populations with a 0.16 difference in depression rates? 
Does sample size impact our conclusion? 

Learn By Doing 

We will use a simulation to investigate these questions. 
The simulation will randomly select a sample of 64 female 
teens from a population in which 26% are depressed and a 
sample of 100 male teens from a population in which 10% 
are depressed. (In the real National Survey of Adolescents, 
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the samples were very large. Later we investigate whether 
larger samples will change our conclusion.) 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=174 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=174 

A simulation is needed for this activity. Click here to open 
it in its own window. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=174 
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Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=174 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=174 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=174 

This diagram illustrates our process here. Notice that we are 
sampling from populations with assumed parameter values, but we 
are investigating the difference in population proportions. From 
the simulation, we can judge only the likelihood that the actual 
difference of 0.06 comes from populations that differ by 0.16. We 
cannot make judgments about whether the female and male 
depression rates are 0.26 and 0.10 respectively. We can make a 
judgment only about whether the depression rate for female teens 
is 0.16 higher than the rate for male teens. This is what we meant by 
“It’s not about the values – it’s about how they are related!” 
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151. Distribution of 
Differences in Sample 
Proportions (2 of 5) 

 

Learning Objectives 

• Draw conclusions about a difference in population 
proportions from a simulation. 

Introduction 
Recall that we are in the middle of an investigation about the 

difference in female and male teen depression rates. In our 
investigation, we are assuming that 26% of female teens and 10% of 
male teens are depressed. That is, we assume a 16% = 0.16 difference 
favoring girls. 

• We saw a 0.06 gender difference in teen depression rates from 
the National Survey of Adolescents. Again, girls had a higher rate 
of depression. Does this study suggest that our assumption about 
a 0.16 difference in the populations is wrong? 

• Or could the results have come from populations with a 0.16 
difference in depression rates? 

At this point, we may have a sense of the answers to these questions 
for samples of 64 females and 100 males. But we need to look at the 
long-run behavior of the differences in sample proportions. We also 
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need to investigate the effect of sample size on our conclusion. The 
samples in the National Survey of Adolescents are very large. 

So we continue this investigation in a Simulation WalkThrough. 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=175 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=175 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=175 

On the next page, we use the simulation shown in the WalkThrough 
to make inferences about a difference in population proportions. 
As we did in Linking Probability to Statistical Inference, we use a 
simulation to make observations about the sampling distribution 
before we develop the mathematical model that we will use in 
inference. The logic we use to make inferences with simulated 
sampling distributions is the same logic we use with mathematical 
models. Let’s practice that way of thinking now. 
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Learn By Doing 

Suppose in a study of 540 female and 475 male U.S. teens, 
we find that 8% of the females and 2% of the males are 
depressed. What does this study suggest about our 
assumption that the depression rate of female teens is 16% 
higher than that of male teens in the United States? 

Here is a simulated distribution of differences for a large 
number of independent random samples for these sample 
sizes. Note that we have rescaled the axis, so the 
distribution may look wider than the distributions in the 
WalkThrough, but it actually has less variability. 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=175 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=175 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=175 
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152. Distribution of 
Differences in Sample 
Proportions (3 of 5) 

 

Learning Objectives 

• Draw conclusions about a difference in population 
proportions from a simulation. 

Now we continue with more examples of using a simulation to make 
inferences about differences in population proportions. 

Example 

Abecedarian Early Intervention Project 

Recall the Abecedarian Early Intervention Project. In this 
experiment, researchers selected high-risk infants on the 
basis of the mothers’ education, family income, and other 
factors. They randomly assigned some infants to receive 5 
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years of high-quality preschool. The remaining infants were 
a control group. All children received nutritional 
supplements, social services, and health care to control the 
effects of these confounding factors on the outcomes of the 
experiment. By age 21, a much larger percentage of the 
treatment group than the control group had enrolled in 
college. 

Assumption about parameters: 

For this example, we assume that 45% of infants with a 
treatment similar to the Abecedarian project will enroll in 
college compared to 20% in the control group. We assume 
that a high-quality preschool experience will produce a 
25% increase in college enrollment. We call this the 
treatment effect. 

Let’s suppose that childcare institutions across the 
United States want to replicate the Abecedarian project. 
How much variation in results can we expect from 
fluctuation in random assignment to treatment groups? We 
know from our previous work that our answer depends on 
the number of infants we assign to each group. 

Actual sample results: 

Let’s suppose a daycare center replicates the Abecedarian 
project with 70 infants in the treatment group and 100 in 
the control group. After 21 years, the daycare center finds a 
15% increase in college enrollment for the treatment group. 
This is still an impressive difference, but it is 10% less than 
the effect they had hoped to see. What can the daycare 
center conclude about the assumption that the Abecedarian 
treatment produces a 25% increase? 

Here we use the simulation from the WalkThrough to do 
a simulation. 
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Analysis: 

• We assume that the treatment effect is a 25% 
increase in college enrollment. So we see that the 
mean of the differences in sample proportions is 0.25. 
In other words, the differences in sample proportions 
average out to the difference between the population 
proportions. 

• Typical differences from random assignment 
appear to fall between about 0.10 and 0.40. This is 2 
standard errors from the mean. 

• The daycare center achieved a 15% increase. This 
difference in sample proportions of 0.15 is less than 2 
standard errors from the mean, so this result is not 
surprising if the treatment effect is really 25%. 

Conclusion: 

Chance variation that comes from random assignment 
explains the results from this daycare center. The results 
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are not statistically significant. We can view this study as 
weak evidence that the treatment effect is less than 25%. 
So this study does not give us evidence strong enough to 
reject the claim that the Abecedarian treatment produces a 
25% treatment effect. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=176 

Example 

HPV Vaccine 

During a debate between Republican presidential 
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candidates in 2011, Michele Bachmann criticized an 
executive order made by her opponent, Texas Governor 
Rick Perry. The executive order required that all sixth-
grade girls receive an HPV vaccine. HPV (human 
papillomavirus) infections are widespread. Some forms of 
HPV cause cancer. In 2007, the New England Journal of 
Medicine published the results of two large, randomized, 
placebo-controlled trials of a vaccine for HPV-related 
cancer. For the group of girls and women who received the 
vaccine, the HPV-related cancer rate was much lower than 
for those who received a placebo. 

After the debate, a Congressional Connection Poll asked 
1,000 people the following question: “As you may have 
heard, a few years ago the state of Texas required girls 
entering sixth grade to receive vaccinations against a virus 
that can cause cervical cancer in women. These injections 
were required for all girls unless their parent or legal 
guardian requested that they not receive them. Do you 
think Texas was right or wrong to require the 
vaccinations?” Fifty-seven percent of those polled 
answered that the state was wrong. 

Let’s suppose 55% of all U.S. adults oppose mandatory 
vaccination against HPV. Let’s also suppose there is no 
difference between men and women on this issue. So we 
assume that 55% of all U.S. men and 55% of all U.S. women 
oppose mandatory vaccination against HPV. 

Suppose we ask this same question to a random sample 
of 100 U.S. men and 150 U.S. women. How much of a 
difference in poll results will convince us that there are 
gender differences with this issue? 

Use the simulation to do a simulation to answer this 
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question. Enter your answer in the Learn By Doing activity 
that follows. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=176 

 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=176 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=176 
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153. Distribution of 
Differences in Sample 
Proportions (4 of 5) 

 

Learning Objectives 

• Draw conclusions about a difference in population 
proportions from a simulation. 

The Sampling Distribution of Differences in 
Sample Proportions 

Let’s summarize what we have observed about the sampling 
distribution of the differences in sample proportions. We want to 
create a mathematical model of the sampling distribution, so we 
need to understand when we can use a normal curve. We also 
need to understand how the center and spread of the sampling 
distribution relates to the population proportions. 

Shape: 
In each situation we have encountered so far, the distribution of 

differences between sample proportions appears somewhat normal, 
but that is not always true. We discuss conditions for use of a 
normal model later. 
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Center: 
Regardless of shape, the mean of the distribution of sample 

differences is the difference between the population proportions, p1 

– p2. This is always true if we look at the long-run behavior of the 
differences in sample proportions. 

Spread: 
We have observed that larger samples have less variability. 

Advanced theory gives us this formula for the standard error in the 
distribution of differences between sample proportions: 

Notice the following: 

• The terms under the square root are familiar. These terms are 
used to compute the standard errors for the individual 
sampling distributions of  and  . 

• The sample size is in the denominator of each term. As we 
learned earlier this means that increases in sample size result 
in a smaller standard error. 

Comment 

Let’s look at the relationship between the sampling distribution 
of differences between sample proportions and the sampling 
distributions for the individual sample proportions we studied in 
Linking Probability to Statistical Inference. We compare these 
distributions in the following table. 
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Notice the relationship between the means: 

• The mean of the differences is the difference of the means. 
This makes sense. The mean of each sampling distribution of 
individual proportions is the population proportion, so the 
mean of the sampling distribution of differences is the 
difference in population proportions. 

Notice the relationship between standard errors: 

• The standard error of differences relates to the standard 
errors of the sampling distributions for individual proportions. 
Look at the terms under the square roots. Since we add these 
terms, the standard error of differences is always larger than 
the standard error in the sampling distributions of individual 
proportions. In other words, there is more variability in the 
differences. 

 

Variability and Variance 

In this module, we sample from two populations of 
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categorical data, and compute sample proportions from 
each. 

We have seen that the means of the sampling 
distributions of sample proportions are  and 

the standard errors are 

 . 

Statisticians often refer to the square of a standard 
deviation or standard error as a variance. The variances 
of the sampling distributions of sample proportion are 

If we add these variances we get the variance of the 
differences between sample proportions. 

For the sampling distribution of all differences, 
 the mean,  , of all differences is 

the difference of the means  . The variance of 

all differences,  , is the sum of the 

variances,  . 

We will now do some problems similar to problems we did earlier. 
Only now, we do not use a simulation to make observations about 
the variability in the differences of sample proportions. Instead, we 
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use the mean and standard error of the sampling distribution. But 
our reasoning is the same. 

Example 

Controversy about HPV Vaccine 

During a debate between Republican presidential 
candidates in 2011, Michele Bachmann, one of the 
candidates, implied that the vaccine for HPV is unsafe for 
children and can cause mental retardation. Scientists and 
other healthcare professionals immediately produced 
evidence to refute this claim. A USA Today article, “No 
Evidence HPV Vaccines Are Dangerous” (September 19, 
2011), described two studies by the Centers for Disease 
Control and Prevention (CDC) that track the safety of the 
vaccine. Here is an excerpt from the article: 

First, the CDC monitors reports to the Vaccine 
Adverse Event Reporting System, a database to which 
anyone can report a suspected side effect. CDC officials 
then investigate to see whether reported problems 
could possibly be caused by vaccines or are simply a 
coincidence. Second, the CDC has been following girls 
who receive the vaccine over time, comparing them 
with a control group of unvaccinated girls….Again, the 
HPV vaccine has been found to be safe. 

According to an article by Elizabeth Rosenthal, “Drug 
Makers’ Push Leads to Cancer Vaccines’ Rise” (New York 
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Times, August 19, 2008), the FDA and CDC said that “with 
millions of vaccinations, by chance alone some serious 
adverse effects and deaths will occur in the time period 
following vaccination, but have nothing to do with the 
vaccine.” The article stated that the FDA and CDC monitor 
data to determine if more serious effects occur than would 
be expected from chance alone. 

According to another source, the CDC data suggests that 
serious health problems after vaccination occur at a rate of 
about 3 in 100,000. This is a proportion of 0.00003. But are 
these health problems due to the vaccine? Is the rate of 
similar health problems any different for those who don’t 
receive the vaccine? Let’s assume that there are no 
differences in the rate of serious health problems between 
the treatment and control groups. That is, let’s assume that 
the proportion of serious health problems in both groups is 
0.00003. 

Suppose the CDC follows a random sample of 100,000 
girls who had the vaccine and a random sample of 200,000 
girls who did not have the vaccine. Over time, they 
calculate the proportion in each group who have serious 
health problems. 

Question: How much of a difference in these sample 
proportions is unusual if the vaccine has no effect on the 
occurrence of serious health problems? 

To answer this question, we need to see how much 
variation we can expect in random samples if there is no 
difference in the rate that serious health problems occur, so 
we use the sampling distribution of differences in sample 
proportions. 
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• Center: Mean of the differences in sample 
proportions is 

• Spread: The large samples will produce a standard 
error that is very small. The standard error of the 
differences in sample proportions is 

Answer: We can view random samples that vary more 
than 2 standard errors from the mean as unusual. If there is 
no difference in the rate that serious health problems 
occur, the mean is 0. So differences in rates larger than 0 + 
2(0.00002) = 0.00004 are unusual. This is equivalent to 
about 4 more cases of serious health problems in 100,000. 
With such large samples, we see that a small number of 
additional cases of serious health problems in the vaccine 
group will appear unusual. But are 4 cases in 100,000 of 
practical significance given the potential benefits of the 
vaccine? This is an important question for the CDC to 
address. 

Learn By Doing 

According to a 2008 study published by the AFL-CIO, 78% 
of union workers had jobs with employer health coverage 
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compared to 51% of nonunion workers. In 2009, the 
Employee Benefit Research Institute cited data from large 
samples that suggested that 80% of union workers had 
health coverage compared to 56% of nonunion workers. 
Let’s suppose the 2009 data came from random samples of 
3,000 union workers and 5,000 nonunion workers. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=177 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=177 
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Learn By Doing 

The following is an excerpt from a press release on the 
AFL-CIO website published in October of 2003. 

Wal-Mart exemplifies the harmful trend among 
America’s large employers to shirk health insurance 
responsibilities at the cost of their workers and 
community…. With reduced coverage and increased 
workers’ premium fees, Wal-Mart – the largest private 
employer in the U.S. – sets a troubling standard. Fewer 
than half of Wal-Mart workers are insured under the 
company plan – just 46 percent. This rate is 
dramatically lower than the 66 percent of workers at 
large private firms who are insured under their 
companies’ plans, according to a new Commonwealth 
Fund study released today which documents the 
growing trend among large employers to drop health 
insurance for their workers. 

Suppose we want to see if this difference reflects 
insurance coverage for workers in our community. We 
select a random sample of 50 Wal-Mart employees and 50 
employees from other large private firms in our 
community. Suppose that 20 of the Wal-Mart employees 
and 35 of the other employees have insurance through 
their employer. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=177 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=177 
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154. Distribution of 
Differences in Sample 
Proportions (5 of 5) 

 

Learning Objectives 

• Estimate the probability of an event using a normal 
model of the sampling distribution. 

Why Do We Care about a Normal Model? 

Now we focus on the conditions for use of a normal model for the 
sampling distribution of differences in sample proportions. 

We use a normal model for inference because we want to make 
probability statements without running a simulation. If we are 
conducting a hypothesis test, we need a P-value. If we are 
estimating a parameter with a confidence interval, we want to state 
a level of confidence. These procedures require that conditions for 
normality are met. 

Note: If the normal model is not a good fit for the sampling 
distribution, we can still reason from the standard error to identify 
unusual values. We did this previously. For example, we said that it 
is unusual to see a difference of more than 4 cases of serious health 
problems in 100,000 if a vaccine does not affect how frequently 
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these health problems occur. But without a normal model, we can’t 
say how unusual it is or state the probability of this difference 
occurring. 

When Is a Normal Model a Good Fit for the 
Sampling Distribution of Differences in 
Proportions? 

A normal model is a good fit for the sampling distribution of 
differences if a normal model is a good fit for both of the individual 
sampling distributions. More specifically, we use a normal model 
for the sampling distribution of differences in proportions if the 
following conditions are met. 

These conditions translate into the following statement: 
The number of expected successes and failures in both samples must 

be at least 10. (Recall here that success doesn’t mean good and failure 
doesn’t mean bad. A success is just what we are counting.) 

Here we complete the table to compare the individual sampling 
distributions for sample proportions to the sampling distribution of 
differences in sample proportions. 
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Example 

More on Conditions for Use of a Normal 
Model 

All of the conditions must be met before we use a normal 
model. If one or more conditions is not met, do not use a 
normal model. Here we illustrate how the shape of the 
individual sampling distributions is inherited by the 
sampling distribution of differences. 
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Learn By Doing 

Recall the AFL-CIO press release from a previous activity. 
“Fewer than half of Wal-Mart workers are insured under 
the company plan – just 46 percent. This rate is 
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dramatically lower than the 66 percent of workers at large 
private firms who are insured under their companies’ plans, 
according to a new Commonwealth Fund study released 
today, which documents the growing trend among large 
employers to drop health insurance for their workers.” 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=178 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=178 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=178 

Using the Normal Model in Inference 

When conditions allow the use of a normal model, we use the 
normal distribution to determine P-values when testing claims and 
to construct confidence intervals for a difference between two 
population proportions. 

We can standardize the difference between sample proportions 
using a z-score. We calculate a z-score as we have done before. 

For a difference in sample proportions, the z-score formula is 
shown below. 
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Example 

Abecedarian Early Intervention Project 

Recall the Abecedarian Early Intervention Project. For this 
example, we assume that 45% of infants with a treatment 
similar to the Abecedarian project will enroll in college 
compared to 20% in the control group. That is, we assume 
that a high-quality prechool experience will produce a 25% 
increase in college enrollment. We call this the treatment 
effect. 

Let’s suppose a daycare center replicates the Abecedarian 
project with 70 infants in the treatment group and 100 in 
the control group. After 21 years, the daycare center finds a 
15% increase in college enrollment for the treatment group. 
This is still an impressive difference, but it is 10% less than 
the effect they had hoped to see. 

What can the daycare center conclude about the 
assumption that the Abecedarian treatment produces a 25% 
increase? 

Previously, we answered this question using a simulation. 
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This difference in sample proportions of 0.15 is less than 
2 standard errors from the mean. This result is not 
surprising if the treatment effect is really 25%. We cannot 
conclude that the Abecedarian treatment produces less 
than a 25% treatment effect. 

Now we ask a different question: What is the probability 
that a daycare center with these sample sizes sees less than a 
15% treatment effect with the Abecedarian treatment? 

We use a normal model to estimate this probability. The 
simulation shows that a normal model is appropriate. We 
can verify it by checking the conditions. All expected 
counts of successes and failures are greater than 10. 

For the treatment group: 
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For the control group: 

In the simulated sampling distribution, we can see that 
the difference in sample proportions is between 1 and 2 
standard errors below the mean. So the z-score is between 
−1 and −2. When we calculate the z-score, we get 
approximately −1.39. 

We use a simulation of the standard normal curve to find 
the probability. We get about 0.0823. 

Conclusion: If there is a 25% treatment effect with the 
Abecedarian treatment, then about 8% of the time we will 
see a treatment effect of less than 15%. This probability is 
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based on random samples of 70 in the treatment group and 
100 in the control group. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=178 

Let’s Summarize 

In “Distributions of Differences in Sample Proportions,” we 
compared two population proportions by subtracting. When we 
select independent random samples from the two populations, the 
sampling distribution of the difference between two sample 
proportions has the following shape, center, and spread. 

Shape: 
A normal model is a good fit for the sampling distribution if the 

number of expected successes and failures in each sample are all at 
least 10. Written as formulas, the conditions are as follows. 
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Center: 
Regardless of shape, the mean of the distribution of sample 

differences is the difference between the population proportions, 
 . This is always true if we look at the long-run behavior 

of the differences in sample proportions. 
Spread: 
As we know, larger samples have less variability. The formula for 

the standard error is related to the formula for standard errors 
of the individual sampling distributions that we studied in Linking 
Probability to Statistical Inference. 

If a normal model is a good fit, we can calculate z-scores and find 
probabilities as we did in Modules 6, 7, and 8. The formula for the 
z-score is similar to the formulas for z-scores we learned previously. 
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155. Introduction: Estimate 
the Difference Between 
Population Proportions 

What you’ll learn to do: Construct and interpret 
confidence intervals to compare two population/
treatment group proportions. 

LEARNING OBJECTIVES 

• Construct a confidence interval to estimate the 
difference between two population proportions (or 
the size of a treatment effect) when conditions are 
met. Interpret the confidence interval in context. 

• Interpret the meaning of a confidence level 
associated with a confidence interval and describe 
how the confidence level affects the margin of error. 

• Given the description of a statistical study, evaluate 
whether conclusions are reasonable. 

874  |  Introduction: Estimate the
Difference Between Population



156. Estimate the Difference 
between Population 
Proportions (1 of 3) 

 

Learning Objectives 

• Recognize when to use a hypothesis test or a 
confidence interval to compare two population 
proportions or to investigate a treatment effect for a 
categorical variable. 

• Construct a confidence interval to estimate the 
difference between two population proportions (or 
the size of a treatment effect) when conditions are 
met. Interpret the confidence interval in context. 

In “Distributions of Differences in Sample Proportions,” we used 
simulation to observe the behavior of the differences in sample 
proportions when we randomly select many, many samples. From 
the simulation, we developed a normal probability model to 
describe the sampling distribution of sample differences. With this 
model, we are now ready to do inference about a difference in 
population proportions (or about a treatment effect.) 

When our goal is to estimate a difference between two population 
proportions (or the size of a treatment effect), we select two 
independent random samples and use the difference in sample 
proportions as an estimate. Of course, random samples vary, so we 
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want to include a statement about the amount of error that may 
be present. Because the differences in sample proportions vary in 
a predictable way, we can also make a probability statement about 
how confident we are in the process that we used to estimate the 
difference between the population proportions. You may recognize 
that what we are describing is a confidence interval. 

In Inference for One Proportion, we calculated confidence 
intervals to estimate a single population proportion. In this section, 
“Estimate the Difference between Population Proportions,” we learn 
to calculate a confidence interval to estimate the difference 
between two population proportions. If the data comes from an 
experiment, we estimate the size of the treatment effect. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=180 

Confidence Interval for a Difference in Two 
Population Proportions: the Basics 

Every confidence interval has this form: 
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To estimate a difference in population proportions (or a treatment 
effect), the statistic is a difference in sample proportions, so the 
confidence interval is 

When we select two random samples and calculate the difference 
in the sample proportions, we do not know the exact amount of 
error for this particular pair of samples. We therefore use the 
standard error as a typical amount of error and calculate the margin 
of error from the standard error, as we did in Inference for One 
Proportion. 

If a normal model is a good fit for the sampling distribution, 
we can use it to make probability statements that describe our 
confidence in the interval. More specifically, we use the normal 
model to describe our confidence that the difference in population 
proportions lies within a given margin of error of the difference 
in sample proportions. For example, we can state that we are 95% 
confident that the difference in population proportions is contained 
in the following interval: 

 

Learn By Doing 

Nuclear Power 

The following problem is based on a report, “Opposition 
to Nuclear Power Rises amid Japanese Crisis,” by the Pew 
Research Center (March 21, 2011). 
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After the nuclear reactor accidents in Japan during the 
spring of 2011, there was a shift in public support for 
expanded use of nuclear power in the United States. A few 
months before the accident, 47% of a random sample of 
1,004 U.S. adults supported expanded use of nuclear power. 
After the nuclear accident in Japan, 39% of a different 
random sample of 1,004 U.S. adults favored expanded use. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=180 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=180 

What Does 95% Confident Really Mean? 

95% confident comes from a normal model of the sampling 
distribution. 
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To review this idea in the context of differences in sample 
proportions, let’s start with a picture to help us visualize a 
confidence interval and its relationship to the sampling distribution. 
The following normal model represents the sampling distribution. 

 
In the diagram, notice the sample difference. In the sampling 

distribution, we can see that the error in this sample difference is 
less than the margin of error. We know this because the distance 
between the sample difference and the population difference is 
shorter than the length of the margin of error (abbreviated MOE in 
the figure). When we create a confidence interval with this sample 
difference, we mark a distance equal to a margin of error on either 
side of the sample difference. Notice that this interval contains 
the population difference, which makes sense because the distance 
between the population difference and the sample difference has 
not changed. 

So where does the “95%” come from? If the normal model is a good 
fit for the sampling distribution, then the empirical rule applies. The 
empirical rule says that 95% of the values in a normal distribution 
fall within 2 standard deviations of the mean. So 95% of the sample 
differences are within 2 standard errors of the mean difference. 
Remember that the mean difference is the difference in population 
proportions. Now consider the confidence interval centered at a 
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sample difference. From the empirical rule, it follows that 95% of 
the confidence intervals, with a margin of error equal to 2 standard 
errors, will contain the population difference. 

Following is another illustration of 95% confidence, a concept 
that is often misinterpreted. This diagram helps us remember the 
correct interpretation. If we construct confidence intervals with a 
margin of error equal to 2 standard errors, then 95% confidence 
means that in the long run, 95% of these confidence intervals will 
contain the population difference, and 5% of the time, the interval 
we calculate will not contain it. We show one of these less common 
intervals with a red dot at the sample difference. 

 
Of course, in reality, we don’t know the difference in population 

proportions. (This is the why we want to estimate it with a 
confidence interval!) So, in reality, we will not be able to determine 
if a specific confidence interval does or does not contain the true 
difference in population proportions. This is why we state a level of 
confidence. For a specific interval, we say we are 95% confident that 
the interval contains the true difference in population proportions. 
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Example 

Correct and Incorrect Interpretations of 
95% Confidence 

Recall our earlier example about the change in public 
opinion after the nuclear accident in Japan. We concluded, 
“We are 95% confident that there was a 4% to 12% drop in 
support for the expanded use of nuclear power in the 
United States after the nuclear accident in Japan.” 

Here are some accurate ways to describe the phrase 
“95% confident” for this confidence interval: 

• There is a 95% chance that poll results from two 
random samples will give a confidence interval that 
contains the true change in public support for the 
expanded use of nuclear power in the United States 
after the nuclear accident in Japan 

• 95% of the time, this method produces an interval 
that covers the true difference in the proportions of 
the U.S. adult population supporting expanded use of 
nuclear power in the United States before and after 
the nuclear accident in Japan. 

Here are some incorrect interpretations: 

• There is a 95% chance that the true difference in 
public opinion (before and after the nuclear accident 
in Japan) is between 4% and 12%. 

• There is a 95% chance that there was a 4% to 12% 
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drop in support for the expanded use of nuclear 
power in the United States after the nuclear accident 
in Japan. 

What do you notice? In the correct interpretations, the 
95% is a probability statement about the random event of 
sampling. So statements like “95% chance that two random 
samples give a confidence interval” and “95% of the time, 
this method produces an interval” describe the chance that 
confidence intervals, in the long run, contain the difference 
in population proportions. 

In the wrong interpretations, the phrase “95% chance” is 
a probability statement about the specific interval 4% to 
12%. Since we already found the confidence interval, there 
is no random event in this description, so we cannot make a 
probability statement about a single specific interval. For 
this reason, we use the phrase “95% confident” when we 
are describing a single interval from a specific study. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=180 

 

Estimate the Difference between Population Proportions (1 of 3)  |  883

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=180#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=180#pb-interactive-content


157. Estimate the Difference 
between Population 
Proportions (2 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate the 
difference between two population proportions (or 
the size of a treatment effect) when conditions are 
met. Interpret the confidence interval in context. 

• Interpret the meaning of a confidence level 
associated with a confidence interval and describe 
how the confidence level affects the margin of error. 

• Given the description of a statistical study, evaluate 
whether conclusions are reasonable. 

Confidence Interval for a Difference in Two 
Population Proportions: Beyond the Basics 

For all confidence intervals, the margin of error is based on the 
standard error. We know from “Distributions of Differences in 
Sample Proportions” that the standard error for the sampling 
distribution of differences in sample proportions is: 
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Obviously, if we are trying to estimate the difference in population 
proportions, we will not know  or . So we estimate these 
population proportions with our sample proportions. This is the 
same approach we used when had to estimate the standard error 
for the distribution of sample proportions in Inference for One 
Proportion. The estimated standard error becomes 

This formula estimates the average error between a difference 
in sample proportions and the true difference in population 
proportions. 

So a 95% confidence interval has the following formula: 

We can use this formula only if a normal model is a good fit 
for the sampling distribution. Recall that this is true only if the 
expected number of successes and failures in each sample is at least 
10. For those who like formulas, these conditions translate into the 
following inequalities. 

We have to adjust these conditions because we do not know the 
population proportions  and . We make the same adjustment 
we made in Inference for One Proportion. We require that the actual
number of successes and failures in each sample is at least 10. For 
those who like formulas, these conditions translate into replacing 

 and  with the corresponding sample proportions. Luckily, 
this tweak works and the normal distribution still gives fairly 
accurate confidence levels for different critical z-scores. 
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Learn By Doing 

Nicotine Replacement Therapy 

The Centre for Addiction and Mental Health in Canada 
posted the following description of a clinical trial on 
clinicaltrials.gov in September 2011. 

This study will examine the efficacy of mailed 
distribution of free Nicotine Replacement Therapy to 
smokers. Telephone numbers will be randomly selected 
from across Canada in order to recruit adult smokers 
interested in completing a smoking survey and willing 
to be interviewed again in 8 weeks and 6 months times. 
Study participants will be asked about their smoking 
history and a hypothetical question: would they be 
interested in receiving the nicotine patch if this were to 
be provided to them free of charge? Participants 
expressing interest will be randomly assigned to one of 
two groups. One group will be offered the opportunity 
to actually receive a program of 5 weeks of nicotine 
patch for free right away and the other group will not 
be offered the free nicotine patches. The proportions of 
smokers in the two groups who quit smoking by the 
6-month interview will be compared. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 

Other Levels of Confidence 

In Inference for One Proportion, we saw that we can create 
confidence intervals for other levels of confidence. Changing the 
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level of confidence changes the critical z-score. The following image 
shows the three most commonly used confidence levels and their 
critical z-scores. 

 
The following table summarizes the critical values for the most 

commonly used confidence levels. 

 
Note: A more exact value for the margin of error of a 95% 

confidence interval uses Zc = 1.96 instead of 2 standard errors. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 

Learn By Doing 

What Is the Effect of Increasing the 
Confidence Level on the Margin of Error? 

In an article titled “The Patriotism God Gap: Is the U.S. 
the Greatest Country in the World?” (Christianity Today, 
August 5, 2011), Tobin Grant cites data from the Pew 
Research Center. Here is an excerpt from the article: 

About 40 percent of other Christians [non-
evangelicals] said the U.S. stands alone as the greatest 
country. Those with no religion stand out as being 
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much less likely to see the U.S. as the greatest country. 
Only 20 percent said the U.S. was the best country in 
the world. 

The article does not give the sample sizes for these two 
groups. For this activity, let’s suppose the data describes 
random samples of 500 from the populations of “other 
Christians” and those with “no religion.” With samples this 
large, we can safely model the sampling distribution of 
sample differences with a normal curve. 

Use the simulation to find the margin of error for the 
90%, 95%, and 99% confidence intervals. (Note: Conditions 
for use of the confidence interval formula are met because 
the sample size is large.) 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=181 
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158. Estimate the Difference 
between Population 
Proportions (3 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate the 
difference between two population proportions (or 
the size of a treatment effect) when conditions are 
met. Interpret the confidence interval in context. 

• Given the description of a statistical study, evaluate 
whether conclusions are reasonable. 

Drawing Conclusions from Confidence Intervals 

It is tempting to get involved in the details of calculating and 
interpreting a confidence interval without thinking about how the 
data was collected. Whether we are calculating a confidence 
interval or performing a hypothesis test, the results are meaningless 
without a properly designed study. 

Here is a quick review of what we already know about the 
connection between study design, use of inference procedures, and 
valid conclusions. 
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• The goal of statistical inference is to use sample statistics to 
estimate population parameters. Therefore, the data must be a 
representative sample of the population of interest. This also 
applies to inference that compares two population parameters. 

• In general, we can use statistical inference procedures if the 
data come from randomly selected or randomly assigned 
individuals. 

• Cause-and-effect conclusions are possible when we randomly 
assign individuals to treatment groups in a well-designed 
experiment. 

• Since inference procedures are based on probability models, 
the data must also meet the specific conditions for the 
procedure we have chosen. 

In the next activities, we apply these ideas to the use of confidence 
intervals for estimating a difference between two population 
proportions (or estimating a treatment effect.) 

Learn By Doing 

Does Involving a Statistician Improve the 
Chance That a Medical Research Paper Will 
Be Published? 

The following excerpt from “How Statistical Expertise Is 
Used in Medical Research” (ALTMAN, D. G., S. N. GOODMAN, 
AND S. SCHROTER, JOURNAL OF THE AMERICAN MEDICAL 

ASSOCIATION 287(21):2817–20, 2002) describes the data 
collection method for this study. 
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Authors of original research articles who submitted 
to BMJ [British Medical Journal] and Annals of 
Internal Medicine from May through August 2001 were 
sent a short questionnaire….Authors were asked if they 
received assistance from a person with statistical 
expertise. 

Of the 190 who did not work with a statistician, 134 had 
papers rejected without peer review. Of the 514 who did 
work with a statistician, 293 had papers rejected without 
peer review. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=182 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=182 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=182 

Comment 

Even when inference is inappropriate, exploratory data analysis can 
give us important information. The authors of the previous study list 
two other reasons that their data “make inference difficult.” But they 
end their paper with the following statement. “Nevertheless, this 
study provides a picture of the norms and practices of this aspect of 
the medical research enterprise in 2001 and identifies several areas 
for possible exploration and improvement in the future.” 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=182 

Community College Student Athletes and Steroid 
Use 

Robert D. Kersey published an article titled “Anabolic-Androgenic 
Steroid Use among California Community College Student Athletes” 
(JOURNAL OF ATHLETIC TRAINERS 31(3):237 – 41, 1996) comparing 
various aspects of users and nonusers. The study used an advanced 
random sampling technique to select 10 representative community 
colleges in California and then to select a random sample of student 
athletes from the 10 colleges. The group of 1,185 male and female 
student-athletes completed an anonymous questionnaire. Of the 
sample, 4.2% of the males and 1.2% of the females admitted to using 
steroids. 
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Let’s Summarize 

Every confidence interval has the following form: 

To estimate a difference in population proportions (or a treatment 
effect), the statistic is a difference in sample proportions, so the 
confidence interval is 

The margin of error is based on the estimated standard error in 
the sampling distribution: 

If a normal model is a good fit for the sampling distribution, then 
the 95% confidence interval is 

Use this formula only if a normal model is a good fit for the 
sampling distribution. A normal model is a good fit when the counts 
of successes and failures in both samples are at least 10. 

When the conditions for normality are met, the confidence level 
is related to margin of error. To find a confidence interval for a 
different level of confidence, replace 2 with the appropriate z-score. 
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There are many differences between sample proportions, 

. Each of these differences generates its own confidence 

interval. The proportion of confidence intervals that contains the 
difference between the population proportions, , is equal 
to the level of confidence. 

As always, “garbage in, garbage out.” The results of a confidence 
interval are meaningless without a properly designed study. 
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159. Introduction: Hypothesis 
Test for Difference in Two 
Population Proportions 

What you’ll learn to do: Construct and interpret 
an appropriate hypothesis test to compare two 
population/treatment group proportions. 

LEARNING OBJECTIVES 

• Under appropriate conditions, conduct a 
hypothesis test for comparing two population 
proportions or two treatments. State a conclusion in 
context. 

• Interpret the P-value as a conditional probability. 
• Identify type I and type II errors and select an 

appropriate significance level based on an analysis of 
the consequences of each type of error. 

Introduction: Hypothesis Test for
Difference in Two Population



160. Hypothesis Test for 
Difference in Two Population 
Proportions (1 of 6) 

 

Learning Objectives 

• Recognize when to use a hypothesis test or a 
confidence interval to compare two population 
proportions or to investigate a treatment effect for a 
categorical variable. 

• Under appropriate conditions, conduct a 
hypothesis test for comparing two population 
proportions or two treatments. State a conclusion in 
context. 

Introduction 

In Inference for Two Proportions, our focus is on inference that 
compares two populations or two treatments with a categorical 
response variable. The parameters and statistics are proportions. 
In the section “Estimate the Difference between Population 
Proportions,” we learned how to use a difference in sample 
proportions to calculate a confidence interval. The confidence 
interval estimates a treatment effect or the difference between two 
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population proportions. In this section, “Hypothesis Test for a 
Difference in Population Proportions,” we learn to use a difference 
in sample proportions to test a hypothesis about a treatment effect 
or a hypothesis that compares two population proportions. 

We did hypothesis tests in Inference for One Proportion. Each 
claim involved a single population proportion. Now we will test 
claims about a treatment effect or about a difference in population 
proportions, and we’ll see that the steps and the logic of the 
hypothesis test are the same. Before we get into the details, let’s 
practice identifying research questions and studies that involve two 
populations or two treatments with a categorical response variable. 
Here are some examples. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=184 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=184 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=184 

Stating Hypotheses about Two Population 
Proportions 

Whenever we test a hypothesis, we begin by stating null and 
alternative hypotheses. 

The null hypothesis is a statement of “no effect” or “no difference,” 
so the null hypothesis for all hypothesis tests about two population 
proportions is H0: p1 − p2 = 0. When we say there is no difference in 
the population proportions (or no treatment effect), it is equivalent 
to saying that the population proportions are equal: p1 = p2. 

The alternative hypothesis is one of the following: 

Ha: p1 − p2 > 0 (or p1 > p2) 
Ha: p1 − p2 < 0 (or p1 < p2) 
Ha: p1 − p2 ≠ 0 (or p1 ≠ p2) 
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Example 

The Abecedarian Project 

Will early childhood education improve the likelihood of 
college attendance for poor children? Recall the experiment 
conducted by the Abecedarian (A-B-C-Darian) project in 
the 1970s. The study randomly assigned children to a 
control group (with no preschool) or a treatment group 
(with high-quality preschool). 

To test the claim that the treatment increases the 
proportion of children who eventually attend college, we 
define a null and an alternative hypothesis. 

Define p1 to be the proportion of children who attend a 
quality preschool and eventually go to college. Define p2 to 
be the proportion of children who did not attend preschool 
but eventually go to college. 

The null hypothesis is always a statement of “no effect” or 
“no difference,” so we assume that these proportions are 
equal: p1 = p2. Their difference is therefore zero: 

H0: p1 − p2 = 0 

In this example, the null hypothesis says that the 
preschool treatment has no effect on the proportion of 
children who eventually go to college. 

The alternative hypothesis reflects our claim of a 
treatment effect. We chose to make p1 connected to the 
treatment, so our claim says that p1 is greater than p2 (p1 > 
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p2). This translates into a difference that is greater than 
zero. It is positive: 

Ha: p1 − p2 > 0 

Establishing the null and alternative hypotheses in a comparison 
of two proportions is an important part of the hypothesis testing 
process. The next few activities provide an opportunity to practice 
this skill. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=184 
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161. Hypothesis Test for 
Difference in Two Population 
Proportions (2 of 6) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test for comparing two population 
proportions or two treatments. State a conclusion in 
context. 

• Interpret the P-value as a conditional probability. 

Before we get into the details of the hypothesis test for a difference 
in two population proportions, let’s review the general steps in 
hypotheses testing that we learned in Inference for One Proportion. 
The steps and the logic of the hypothesis test are the same as in that 
module. We also practiced this type of thinking more informally in 
the section “Distribution of Differences in Sample Proportions.” 

Step 1: Determine the hypotheses. 
The hypothesis comes from the research question. The null 

hypothesis is a statement of “no effect” or “no difference.” The 
alternative hypothesis reflects our claim. 

Step 2: Collect the data. 
Ideally, we select two independent random samples from two 

populations, or we randomly assign subjects to two treatments in an 
experiment. 
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Step 3: Assess the evidence. 
We assume that the null hypothesis is true. This means we assume 

the population proportions are the same. Then we ask, Could the 
data come from populations with the same proportions? Now imagine 
taking random samples from these populations. Even if there is 
no difference between the population proportions, we expect 
variability in the differences between sample proportions. These 
differences are due to chance. We use simulation or a mathematical 
model to see how much the differences in sample proportions vary. 
Then we figure out if the difference we see in the data is likely or 
unlikely. Note that the wording “likely or unlikely” implies that this 
step requires some kind of probability calculation. We will again 
find a P-value. As before, the P-value is a probability related to the 
sampling distribution. It describes the chance that random samples 
will have a difference in sample proportions that is at least as 
extreme as we see in the data if the null hypothesis is true. “At 
least as extreme as” means as far from the center of the sampling 
distribution or further. 

Step 4: State a conclusion. 
We use the P-value to make a decision. The P-value helps us 

determine if the difference in proportions seen in the data is 
statistically significant or due to chance. One of two outcomes can 
occur. 

• One possibility: The difference in sample proportions from the 
data is extremely unlikely. In this case, there is only a small 
chance that proportions from random samples differ more 
than what we observed in the data. So the probability (the P-
value) is small, suggesting that the data did not come from 
populations with the same proportions. We view this as strong 
evidence against the null hypothesis. We reject the null 
hypothesis in favor of the alternative hypothesis. 

• The other possibility: The difference in sample proportions 
observed in the data are fairly likely (not unusual). In this case, 
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it is not surprising to see proportions from random samples 
with larger absolute differences than we observed in the data. 
The probability is large enough that we don’t think the data is 
unusual. It could come from populations with the same 
proportions. A large P-value suggests that we do not have 
evidence against the null hypothesis, so we cannot reject it in 
favor of the alternative hypothesis. 

Before we get into the details of the hypothesis test, let’s practice 
using the P-value to make a decision. 

Learn By Doing 

Recall the Abecedarian Project. In this experiment 
researchers randomly assigned infants to a treatment or 
control group. The treatment group received 5-years of 
high quality pre-school. We previously stated the following 
hypotheses to test the claim that a larger proportion of 
children who received the treatment will attend college. 

p1 is the the proportion of 
children who attend a quality preschool that eventually go 
to college. 

p2 is the the proportion of children who did not attend a 
quality preschool that eventually go to college. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=185 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=185 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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162. Hypothesis Test for 
Difference in Two Population 
Proportions (3 of 6) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test for comparing two population 
proportions or two treatments. State a conclusion in 
context. 

• Interpret the P-value as a conditional probability. 

Details of This Hypothesis Test 

In a hypothesis test, we base our conclusion on the P-value. Where 
does the P-value come from? The P-value comes from a normal 
model of the sampling distribution of differences in sample 
proportions. In “Distribution of Differences in Sample Proportions,” 
we saw that a normal model is a good fit for the sampling 
distribution if each sample has at least 10 successes and failures. 

We learned that the sampling distribution has the following 
center and spread. 
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In the hypothesis test, we do not make a claim about either 
population proportion, so we do not have values for p1 and p2. For a 
confidence interval, we used the sample proportions,  and , 

to estimate those values. Here we use a different estimate. Since the 
null hypothesis states that the population proportions are equal, we 
use the same estimate for both population proportions. 

To do this, we combine the samples to create a pooled proportion. 
Here, x1 and x2 are the numbers of successes in the respective 
samples of sizes n1 and n2. We use the pooled proportion as an 
estimate for both population proportions. 

In a hypothesis test, we use the pooled proportion to estimate the 
standard error. 

We use the estimated standard error to calculate the Z-test 
statistic. 

Since p1 − p2 = 0 in the null hypothesis, the Z-test statistic 
simplifies to the following: 
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After we calculate the Z-test statistic, we use a simulation or 
other technology to find the P-value from the standard normal 
curve. 

Example 

Comparing Wal-Mart’s with Other Firms’ 
Insurance Coverage 

Recall the 2003 press release by the AFL-CIO: 

Wal-Mart exemplifies the harmful trend among 
America’s large employers to shirk health insurance 
responsibilities at the cost of their workers and 
community….Fewer than half of Wal-Mart workers are 
insured under the company plan – just 46 percent. This 
rate is dramatically lower than the 66 percent of 
workers at large private firms who are insured under 
their companies’ plans, according to a new 
Commonwealth Fund study released today. 

This press release claims that there is a 20% difference in 
the proportion of workers with insurance when we 
compare Wal-Mart to other large private firms. In 
hypothesis testing for two population proportions, we 
cannot test a claim about a specific difference between two 
population proportions. Instead, we test a claim that the 
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proportion of Wal-Mart workers with health insurance is 
less than the proportion of workers at large private firms 
with health insurance. 

Suppose we select a random sample of 50 Wal-Mart 
workers and find 23 have health insurance. Suppose also 
that a random sample of 70 workers of large private firms 
had 43 with health insurance. 

For this test, we choose a 5% level of significance (α = 
0.05). 

Step 1: State the hypotheses. 

Let p1 and p2 represent the proportions of workers with 
health insurance among Wal-Mart and large private 
company employees respectively. 

The null hypothesis is a claim of “no difference”: H0: p1 − 
p2 = 0. The alternative hypothesis states that the population 
proportion is lower for Wal-Mart employees: p1 < p2. The 
difference is less than zero, so it is negative: Ha: p1 − p2 < 0. 

Step 2: Collect the data. 

Of 50 Wal-Mart workers, 23 have health insurance. Of 70 
workers from large private firms, 33 have health insurance. 
From the data, we can calculate the difference in sample 
proportions. 

Step 3: Assess the evidence. 

Check the Normality Criteria 

Determine if a normal model is a good fit for the 
sampling distribution. Verify that there are at least 10 
successes and failures in each sample. Here, a success is an 
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employee with health insurance. In the Wal-Mart sample, 
there are 23 successes and 50 − 23 = 27 failures. In the large 
private firms sample, there are 43 successes and 27 failures. 
Each of these is at least 10, so we can use the normal model. 

Compute the Test Statistic (only if the normal model is a 
good fit) 

The test statistic requires the standard error. To compute 
the standard error, we first compute the pooled proportion. 

We use the pooled proportion to estimate the standard 
error. 

Recall the difference in sample proportions from the 
data. 

We use the z-score to determine how many standard 
errors −0.154 is from the mean of 0. 

Note: A z-score of −1.67 tells us that the observed 
difference of  = −0.154 is 1.67 standard errors 

below the assumed difference of zero. Does this suggest 
that the observed difference is statistically significant? 
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Since we stated a significance level of 5%, we need to find 
the P-value and compare it to 0.05. 

Identify the P-Value 

We use a simulation. We want the probability that the 
difference in sample proportions is less than −0.154. This 
corresponds to the probability that Z is less than −1.67. So 
we use the area to the left of the Z-test statistic. The P-
value is about 0.047. If you like symbols, we can write this in 
mathematical notation. 

The P-value is small, about 4.7%. It means that if there is 
no difference in the population proportions, there is about 
a 4.7% chance that random samples will have a difference 
less than −0.154. The difference we observed in our 
samples, then, is fairly unlikely. We do not think this 
difference is due to chance. We see that the P-value is less 
than 5%, so we conclude that the difference we observed is 
statistically significant. 
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Step 4: State a conclusion. 

Use the P-Value to Make a Decision 

A P-value less than the significance level means we reject 
the null hypothesis. So we support the alternative 
hypothesis, p1 − p2 < 0, or more simply, p1 < p2. The given 
sample data support the claim that the proportion of Wal-
Mart workers with health insurance is lower than the 
proportion of workers for large private companies. 

Comment 

If a normal model is a good fit for the sampling distribution, we use 
it to find the P-value. But let’s look at a simulation of the sampling 
distribution to remind ourselves what the P-value really means. 
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The simulation can help us understand the P-value. In the 
simulation, we assume that the population proportions are the 
same, so the difference is 0. This is the null hypothesis. We assume 
the null hypothesis is true and select thousands of random samples 
from populations with the same proportion of successes. The mean 
of the sampling distribution is 0 (as predicted by the null 
hypothesis). We see this in the simulated sampling distribution on 
the left. 

We mark the difference in the sample proportions from our data. 
It is 23/50 − 43/70 = -0.15. This difference has a z-score of −1.67. 
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In the simulation of the sampling distribution, we can see that a 
difference smaller than −0.15 is unlikely. Very few samples have 
a difference less than −0.15. The normal model shows that the 
probability is about 4.7%. 

Putting this all together, we have the formal definition of the 
P-value. The P-value is the probability that random samples have 
results at least as extreme as the data if the null hypothesis is true. 
We can also describe the P-value in terms of z-scores. The P-value 
is the probability that the test statistic has a value more extreme 
than that associated with the data if the null hypothesis is true. 

Learn By Doing 

Are There Gender Differences in Teen 
Depression Rates? 

Previous studies suggest that female teens are more 
likely than male teens to be depressed. Define the 
depression rates for the female and male teens as p1 and p2 

respectively. If we claim that the depression rate is higher 
for female teens (p1 > p2), the null and alternative 
hypotheses are: 

H0: p1 − p2 = 0 
Ha: p1 − p2 > 0 

Let’s test the hypotheses at a 5% significance level. 
Suppose we randomly select 100 female teens and 
determine that 14 are clinically depressed. Among 200 
randomly selected male teens, 16 are clinically depressed. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=186 

Since the normal model is a good fit, we can use the 
standard normal curve to find the P-value. We used a 
simulation. The P-value is about 0.051. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=186 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=186 
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163. Hypothesis Test for 
Difference in Two Population 
Proportions (4 of 6) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test for comparing two population 
proportions or two treatments. State a conclusion in 
context. 

• Given the description of a statistical study, evaluate 
whether conclusions are reasonable. 

A Reminder about Finding P-values 

In a hypothesis test, the P-value is based on the assumption that 
the null hypothesis is true. But the P-value is also related to the 
alternative hypothesis. The logic here is the same logic we used in 
Inference for One Proportion with hypothesis tests. 

When Ha: p1 − p2 < 0, the difference in sample proportions from 
the data must be significantly less than zero to provide evidence 
against the null hypothesis and in favor of the alternative 
hypothesis. In this case, the P-value describes differences in sample 
proportions that are less than the difference observed in the data. 
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This is the area to the left of the test statistic. We call it a left-tailed 
test. 

Similarly, when Ha: p1 − p2 > 0, the difference in sample 
proportions observed in the data must be significantly greater than
zero to provide evidence against the null hypothesis and in favor 
of the alternative hypothesis. In this case, the P-value describes 
differences in sample proportions that are greater than the 
difference observed in the data. This is the area to the right of the 
test statistic. We call it a right-tailed test. 

When Ha: p1 − p2 ≠ 0, the difference in sample proportions 
observed in the data must be significantly different from zero to 
provide evidence against the null hypothesis and in favor of the 
alternative hypothesis. In this case, the P-value is two-tailed. It is 
twice the area of the smaller tail defined by the test statistic. 

 
The next two activities provide more practice with conducting 

a hypothesis test for a difference between two population 
proportions. You will need the simulation below to complete these 
activities. 
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Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 

 

Learn By Doing 

Is a New Antidepressant Effective in 
Treating Depression? 

Depression has many effective treatment options. 
Suppose that in a clinical trial researchers study a new 
antidepressant. They randomly assign 90 depressed teens 
to one of two groups: 40 teens receive the antidepressant 
Fluoxetine with psychiatric therapy. Of these, 25 improve. 
The remaining 50 teens receive placebos with psychiatric 
therapy. Among this group, 18 improve. The experiment is 
double blind, so neither the teens nor the psychiatrists 
know which participants receive Fluoxetine or placebo. 

Define p1 and p2 to be the proportions of all teens who 
improve when taking Fluoxetine and placebo, respectively, 
with psychiatric treatment. We will test the claim, at 1% 
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significance (α = 0.01), that the proportion of teens who 
improve after the Fluoxetine treatment is greater than the 
proportion for teens who received a placebo. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 

Learn By Doing 

Are There Racial Differences in 
Antidepressant Use? 

The following excerpt is from an article by Kerry 
Sheridan, “In the US, Many with Severe Depression Go 
Untreated” (AFP, Oct. 19, 2011). 

The United States is a world leader in rates of 
antidepressant use, but as many as two-thirds of 
Americans with severe depression are not on 
medication….The data also showed significant racial 
and ethnic differences, with almost 14 percent of non-
Hispanic whites taking antidepressants compared to 
four percent of African-Americans and three percent of 
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Mexican-Americans….[E]ven though non-whites are 
getting treated less often, studies have shown that they 
are just as likely as whites to suffer from depression. 
Income appeared to play no role in the prevalence of 
antidepressant usage, said the study. 

The data in this study comes from 12,637 people who 
were interviewed as part of the National Health and 
Nutrition Examination Surveys (NHAMES) from 2005 to 
2008. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=187 
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164. Hypothesis Test for 
Difference in Two Population 
Proportions (5 of 6) 

 

Learning Objectives 

• Given the description of a statistical study, evaluate 
whether conclusions are reasonable. 

Thinking Critically about Conclusions from 
Statistical Studies 

It is not uncommon to see debate over the conclusions and 
implications of statistical studies. When we read summaries of 
statistical studies, it is important to evaluate whether the 
conclusions are reasonable. Here we discuss two common pitfalls in 
drawing conclusions from statistical studies. 

1. The conclusion is not appropriate to the study design. 
2. The conclusion confuses statistical significance with practical 

importance. 

We discuss these pitfalls in general, then look at examples that 
involve an inference about the difference between two population 
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proportions or two treatments. But these pitfalls can happen with 
conclusions drawn from any inference procedure. 

The Conclusion Is Not Appropriate to the Study 
Design 

Here are several examples of this common pitfall. 

1. The study makes an inference based on nonrandom data.If 
the data come from a sample that is not randomly selected or 
from groups that are not randomly assigned, we should not use 
the data in inference procedures. Why? Well, all inference 
procedures are based on probability. We can make probability 
statements only about random events, so the data must come 
from randomly selected or randomly assigned individuals if we 
want to make a statement about the population on the basis of 
the data. With nonrandom data, our main option is to analyze 
the data using exploratory data analysis (the ideas from 
Modules 2, 3, and 4). 

2. The study makes inappropriate cause-and-effect 
conclusions.We can make cause-and-effect conclusions only 
with data from a randomized comparative experiment. If data 
comes from a single observational study, we cannot make 
cause-and-effect conclusions. 

3. The study overgeneralizes its conclusions.If researchers 
randomly assign individuals to one of two treatments in an 
experiment, statistically significant results suggest the 
treatment is effective. This is an appropriate causal conclusion 
if the experiment is well designed. But if the original group of 
individuals is not randomly selected, then we should be 
cautious about generalizing this conclusion to a broader 
population. 
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The following table summarizes these ideas. 

 

Learn By Doing 

Do Energy Drink “Cocktails” Lead to 
Increased Injury Risk? 

The following excerpt is from “Energy Drink ‘Cocktails’ 
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Lead to Increased Injury Risk, Study Shows” (SCIENCE DAILY, 
WWWESCIENCEDAILY.COM, NOV. 6, 2007). 

College students who drink alcohol mixed with so-
called “energy” drinks are at dramatically higher risk 
for injury and other alcohol-related consequences, 
compared to students who drink alcohol without 
energy drinks….The researchers found that students 
who consumed alcohol mixed with energy drinks were 
twice as likely to be hurt or injured, twice as likely to 
require medical attention, and twice as likely to ride 
with an intoxicated driver. 

The study collected data from a Web-based survey of 
4,271 students at 10 North Carolina colleges and 
universities. 

Following are two summaries of this study. Are these 
summaries appropriate? Explain. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 

The Conclusion Confuses Statistical Significance 
with Practical Importance 

Is a statistically significant difference always large enough to be 
important on a practical level? The answer is no. 

Recall that when a P-value is less than the level of significance, 
we say the results are statistically significant. It means that the 
results are not due to chance. In the case of a difference in sample 
proportions, we are saying that the observed difference is larger 
than we expect to see in random samples from populations with the 
same population proportions. But this does not necessarily mean 
the difference is large enough to be important in real life. 

We also know that the P-value depends on the size of the sample. 
Results from large samples vary less, so an observed difference is 
more likely to be statistically significant if the samples are large. 
This means that a very small difference in population parameters 
can be detected by the hypothesis test as statistically significant. 
In this case, the population difference may be too small to be 
important to decisions we might make in real life. On the other 
hand, small random samples can have a lot of variability in their 
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results. In this case, a large population difference may go 
undetected by the hypothesis test because a large sample difference 
may not be statistically significant. We have to be cautious that we 
don’t confuse statistical significance with practical importance. 

Example 

Controversy about HPV Vaccine 

Recall the earlier example about the debate between 
Republican presidential candidates in 2011. Michele 
Bachmann, one of the candidates, implied that the vaccine 
for human papillomavirus (HPV) is unsafe for children and 
can cause mental retardation. In response, USA Today
published an article on September 19, 2011, titled “No 
Evidence HPV Vaccines Are Dangerous.” The article 
describes two studies by the Centers for Disease Control 
and Prevention (CDC) that track the safety of the vaccine. 
Here is an excerpt from the article. 

First, the CDC monitors reports to the Vaccine 
Adverse Event Reporting System, a database to which 
anyone can report a suspected side effect. CDC officials 
then investigate to see whether reported problems 
could possibly be caused by vaccines or are simply a 
coincidence. Second, the CDC has been following girls 
who receive the vaccine over time, comparing them 
with a control group of unvaccinated girls….Again, the 
HPV vaccine has been found to be safe. 
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We now examine “fake” data to demonstrate a couple of 
points. Suppose the CDC conducts a clinical trial to study 
the safety of the vaccine. Researchers select a random 
sample of girls and assign girls randomly to two groups: 
1,000 girls get the vaccine, and 1,000 girls do not. Suppose 
that 6 girls in the vaccinated group develop serious health 
problems, and 1 girl in the unvaccinated group develops 
serious health problems. 

Is this difference statistically significant at the 5% level? 

Yes. If we use a statistical software package to find the P-
value, we get a P-value of about 0.03. So the data supports 
the claim that the proportion of serious side effects is 
greater in the vaccine group (P is about 0.03). 

Is the difference of practical importance? We investigate 
ways to think about this next. 

Learn By Doing 

Controversy about HPV Vaccine 

Suppose a headline summarizing this experiment says 
“Vaccine Leads to Significantly Higher Risk of Serious 
Health Problems for Girls.” Indicate whether each critique 
of this headline is valid or invalid. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 

Someone reading the headline “Vaccine Leads to 
Significantly Higher Risk of Serious Health Problems for 
Girls” might think that it is very risky to have the vaccine. 
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Practical importance here involves how someone judges the 
risk of vaccination. 

Here are two headlines that make statements about the 
risk associated with the vaccine. Indicate whether the 
statements are valid or invalid. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=188 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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herkimerstatisticssocsci/?p=188 
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165. Hypothesis Test for 
Difference in Two Population 
Proportions (6 of 6) 

 

Learning Objectives 

• Identify type I and type II errors and select an 
appropriate significance level based on an analysis of 
the consequences of each type of error. 

Review of Type I and Type II Errors 

Inference is based on probability, so there is always some chance of 
making a wrong decision. Recall that two types of wrong decisions 
can be made in hypothesis testing. When we reject a null hypothesis 
that is true, we commit a type I error. When we fail to reject a null 
hypothesis that is false, we commit a type II error. 

The following table summarizes the logic behind type I and type 
II errors. 
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It is possible to have some influence over the likelihoods of 
committing these errors, but decreasing the chance of a type I error 
increases the chance of a type II error. We have to decide which 
error is more serious for a given situation. Sometimes a type I error 
is more serious, and other times a type II error is more serious. 

Learn By Doing 

Teens and Antidepressants 

Recall the description of a clinical trial in which 
researchers study the effect of a new antidepressant on 
teens. Researchers design a randomized, controlled, 
double-blind experiment to study the effect of the 
antidepressant Fluoxetine combined with psychiatric 
therapy. The control group receives a placebo and 
psychiatric therapy. The response variable is improvement, 
which means symptoms of depression improve. 

The hypotheses are as follows, with p1 = proportion of 
teens who improve in the treatment group (Fluoxetine and 
psychiatric therapy) and p2 = proportion of teens who 
improve in the control group (placebo and psychiatric 
therapy). 
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H0: p1 − p2 = 0 
Ha: p1 − p2 > 0 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 

Decreasing the Chance of Type I or Type II Error 

How can we decrease the chance of a type I or type II error? 
Because decreasing the chance of a type I error increases the 
chance of a type II error, we have to weigh the consequences of 
these errors before deciding how to proceed. 

Recall that the probability of committing a type I error is α. Why? 
Well, when we choose a level of significance (α) , we are choosing a 
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benchmark for rejecting the null hypothesis. If the null hypothesis is 
true, then the probability that we will reject a true null hypothesis is 
α. So the smaller α is, the smaller the probability of a type I error. 

It is more complicated to calculate the probability of a type II 
error. The best way to reduce the probability of a type II error is 
to increase the sample size. But once the sample size is set, larger 
values of α will decrease the probability of a type II error (while 
increasing the probability of a type I error). 

Following are general guidelines for choosing a level of 
significance: 

• If the consequences of a type I error are more serious, choose 
a small level of significance (α). 

• If the consequences of a type II error are more serious, choose 
a larger level of significance (α). But remember that the level of 
significance is the probability of committing a type I error. 

• In general, we pick the largest level of significance that we can 
tolerate as the chance of a type I error. 

Note: It is not always the case that one type of error is worse than 
the other. 

Learn By Doing 

Hormone Replacement Therapy 

Recall the experiment that investigated the side effects of 
hormone replacement therapy (HRT) for women with 
menopausal symptoms. The experiment randomly assigned 
over 16,000 U.S. women to receive a hormone treatment or 
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a placebo. The experiment was double blind. After 5 years, a 
larger proportion of the hormone group had breast cancer 
and heart disease. This observed difference was statistically 
significant. Researchers were so alarmed by the results that 
the experiment was ended early to prevent further harm to 
the health of the women participating in the hormone 
group. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 

The type I error in this situation is that we conclude that 
HRT increases the risk of breast cancer and heart disease, 
but it does not. The type II error is that we conclude that 
HRT does not increase the risk of breast cancer and heart 
disease, but it does. 

Identify the type of error associated with each consequence. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=189 
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Let’s Summarize 

• Hypothesis tests for two proportions can answer research 
questions about two populations or two treatments that 
involve categorical data. 

• The null hypothesis for the two-proportions test is always a 
statement of “no difference.” 

H0: p1 − p2 = 0 

The alternative hypothesis is one of the following. 

Ha: p1 − p2 < 0, or 
Ha: p1 − p2 > 0, or 
Ha: p1 − p2 ≠ 0 

• The test statistic for the two proportions test is similar to the 
test statistic for one sample proportion tests. 

This statistic is approximately normal in its distribution if 
each sample has at least ten successes and failures. Note that 
the standard error is estimated with pooled proportion. 

• The normal distribution may be used to provide P-values for a 
two-proportions test if each sample has at least 10 successes 
and failures. 

• When the P-value in a two-proportions test is less than the 
level of significance (α), we should reject the null hypothesis in 
favor of the alternative. In this case, we say that the differences 
are statistically significant. 

• Two types of errors can be made when conducting a 
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hypothesis test. 

◦ A type I error occurs when we reject a true null 
hypothesis. 

◦ A type II error occurs when we fail to reject a false null 
hypothesis. 

◦ The level of significance, α, is the probability of a type I 
error. 

◦ Increasing the sample size lowers the probability of a type 
II error. 

◦ After considering the consequences of the type I and II 
errors, we should choose the largest value for α that we 
can tolerate, because increasing α decreases the 
probability of a type II error. 

• After conducting a hypothesis test, it is important to consider 
whether the conclusions are reasonable. We discussed two 
common pitfalls in drawing conclusions from statistical 
studies.(1) The conclusion is not appropriate to the study 
design. 

◦ The study makes an inference based on nonrandom data. 
◦ The study makes inappropriate cause-and-effect 

conclusions. 
◦ The study overgeneralizes its conclusions. 

(2) The conclusion confuses statistical significance with 
practical importance. 
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166. Putting It Together: 
Inference for Two 
Proportions 

 

Let’s Summarize 

In Inference for Two Proportions, we learned two inference 
procedures to draw conclusions about a difference between two 
population proportions (or about a treatment effect): (1) a 
confidence interval when our goal is to estimate the difference 
and (2) a hypothesis test when our goal is to test a claim about 
the difference. Both types of inference are based on the sampling 
distribution. 

The Distribution of the Differences in Sample 
Proportions 

In the section “Distribution of Differences in Sample Proportions,” 
we learned about the sampling distribution of differences between 
sample proportions. 

We used simulation to observe the behavior of sample differences 
when we select random samples from two populations. Every 
simulation began with an assumption about the difference between 
the two population proportions. From the simulated sampling 
distribution, we could determine if a sample difference observed in 
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the data was likely or unlikely. A data result that is unlikely to occur 
in the sampling distribution provides evidence that our original 
assumption about the difference in the population proportions is 
probably incorrect. This logic is similar to the logic of hypothesis 
testing. 

Because samples vary, we do not expect sample differences to 
always equal the population difference. Every sample difference has 
some error. We used simulations to observe the amount of error we 
expected to see in sample differences. The “typical” amount of error 
in the sampling distribution connects to the margin of error in a 
confidence interval. 

We also used simulations to describe the shape, center, and 
spread of the sampling distribution. Later we developed a 
mathematical model for the sampling distribution with formulas for 
the mean of the sample differences and the standard deviation of 
the sample differences. We call this standard deviation the standard 
error because it represents an estimate for the average error we see 
in sample differences. 

The mean of sample differences between sample proportions is 
equal to the difference between the population proportions, p1 − p2. 

 
The standard error of differences between sample proportions is 

related to the population proportions and the sample sizes. 
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A normal model is a good fit for the sampling distribution of 
differences between sample proportions under certain conditions. 
We use a normal model if the counts of expected successes and 
failures are at least 10. For those who like formulas, this translates 
into saying the following four calculations must all be at least 10. 

n1p1 

n1(1 − p1) 
n2p2 

n2(1 − p2) 

Estimating the Difference between Two 
Population Proportions 

In the section “Estimate the Difference between Population 
Proportions,” we learned how to calculate a confidence interval to 
estimate the difference between two population proportions (or to 
estimate a treatment effect). 

Every confidence interval has the form: 

To estimate a difference in population proportions (or a treatment 
effect), the statistic is a difference in sample proportions. So the 
confidence interval is 

Also, since we do not know the values of the population 
proportions, we estimate the standard error by using sample 
proportions in the formula for the margin of error. 

Here are the critical Z-values for commonly used confidence 
levels. 
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Confidence Level Critical Value Zc 

90% 1.645 

95% 1.960 

99% 2.576 

The connection between the confidence level and critical Z-value 
depends on the use of a normal model. We use a normal model if 
each sample has at least 10 successes and failures. 

We practiced interpreting confidence intervals and confidence 
levels. For example, we say we are “95% confident” that the 
population difference lies within the calculated confidence interval. 
We do not say there is a 95% chance that the population difference 
lies within the calculated interval. 95% confident means that in the 
long run 95% of the confidence intervals will contain the population 
differences. 

Hypothesis Test for a Difference in Two 
Population Proportions 

In the section “Hypothesis Test for a Difference in Population 
Proportions,” we tested claims regarding the difference between 
two population proportions (or a treatment effect). 

In testing such claims, the null hypothesis is 

H0: p1 − p2 = 0 

The alternative hypothesis is one of three: 

Ha: p1 − p2 < 0, or 
Ha: p1 − p2 > 0, or 
Ha: p1 − p2 ≠ 0 

These are equivalent to the following comparisons of p1 and p2. 
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Ha: p1 < p2 

Ha: p1 > p2 

Ha: p1 ≠ p2 

We use the same criteria for determining if a normal model is a good 
fit for the sampling distribution: each sample must have at least 10 
successes and failures. 

In a hypothesis test, we assume the null hypothesis is true. Since 
we do not have values for p1 and p2, we again use sample data to 
estimate them. In the null hypothesis the population proportions 
are equal, so we create a single-value estimate for the population 
proportions using the pooled proportion. 

With this pooled proportion, we estimate the standard error to 
compute the Z-test statistic for the hypothesis test. We can always 
view the z-score as the error in the statistic divided by the standard 
error. In a hypothesis test, we predict the error on the basis of the 
null, and we estimate the standard error. 

If the conditions for approximate normality are met, this 
standardized statistic is approximately normal. This fact allows us to 
determine a P-value using computer software. 

Whenever the P-value is less than or equal to the level of 
significance, we reject the null hypothesis in favor of the alternative. 
Otherwise, we fail to reject (but do not support) the null hypothesis. 

Because our conclusions are based on probability, there is always 
a chance that our data will lead us to an incorrect conclusion. We 
make a type I error when we reject a true null hypothesis. We make 
a type II error when we fail to reject a false null hypothesis. These 
errors are not the result of a mistake. They are due to chance. 
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The level of significance, α, is the probability of a type I error. The 
probability of a type II error is harder to calculate. We did not learn 
to calculate type II error. Small values of α increase the probability 
of a type II error. Larger samples sizes decrease the probability of a 
type II error. 

Finally, we should always remember “garbage in, garbage out.” If 
random selection or random assignment is not used to produce the 
data, we should not do inference. 
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167. Assignment: A Statistical 
Investigation using Software 

 
Risk Factors for Low Birth Weight 
Rates of infant mortality, birth defect, and premature labor are 

high for babies with low birth weight. There are many factors that 
may contribute to low birth weight. 

In this activity, we use data from a random sample of women 
who participated in a study in 1986 at the Baystate Medical Center 
in Springfield, MA. (Source: Hosmer and Lemeshow (2000), Applied 
Logistic Regression: Second Edition.) 

For the 30 women in the study with a history of premature labor, a 
proportion of 18/30 = 0.60 (60%) had babies with low birth weight. 
For the remaining 159 women, a proportion of 41/159 = 0.26 (26%) 
had babies with low birth weight. 

We now investigate the following research question: do the data 
provide evidence that the proportion of babies born with low birth 
weight is higher for women with a history of premature labor? This 
question is answered with a hypothesis test. To conduct the test we 
use a 1% level of significance. 

Question 1: 

Is this study observational or experimental? 

Question 2: 

Before analyzing the data, use your own experience and intuition 
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to predict what the data will show. Do you think the proportion of 
babies with low birth weight is higher for women with a history of 
premature labor? 

Question 3: 

We will test the claim that the proportion of women with low birth 
weight babies is higher among women with a history of premature 
labor. What are the null and alternative hypotheses? 

Question 4: 

Are the criteria for approximate normality satisfied? 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 5: 

State the test statistic and P-value. Interpret these values. 
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Question 6: 

Give a conclusion in context, and discuss whether a causal 
conclusion is appropriate. 
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PART X 

CHAPTER 10: INFERENCE 
FOR MEANS 
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168. Why It Matters: 
Inference for Means 

 

Learning Objectives 

• Recognize when to use a hypothesis test or a 
confidence interval to draw a conclusion about a 
population mean. 

In Inference for Means, we learn to make inferences about 
population means. Here are the types of research questions we 
focus on. Notice that we are working with quantitative variables for 
the first time in our inference work. 
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Type of 
Question Examples Variable 

Type Unit 

Make an 
estimate 
about the 
population 

What proportion of all U.S. 
adults support the death 
penalty? 

Categorical 
variable 

Inference 
for One 
Proportion 

What is the average number 
of hours that community 
college students work each 
week? 

Quantitative 
variable 

Inference 
for Means 

Test a claim 
about the 
population 

Do the majority of 
community college students 
qualify for federal student 
loans? 

Categorical 
variable 

Inference 
for One 
Proportion 

Has the average birth weight 
in a town decreased from 
3,500 grams? 

Quantitative 
variable 

Inference 
for Means 

Compare 
two 
populations 

Are teenage girls more likely 
to suffer from depression 
than teenage boys? 

Categorical 
variable 

Inference 
for Two 
Proportions 

In community colleges do 
female students have a 
higher average GPA than 
male students? 

Quantitative 
variable 

Inference 
for Means 

Here again is the Big Picture. We have highlighted ideas new to this 
module in purple. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=193 
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169. Introduction: 
Distribution of Sample Means 

What you’ll learn to do: Describe the sampling 
distribution of sample means. 

LEARNING OBJECTIVES 

• Recognize when to use a hypothesis test or a 
confidence interval to draw a conclusion about a 
population mean. 

• Describe the sampling distribution of sample 
means. 

• Draw conclusions about a population mean from a 
simulation. 

Introduction: Distribution of Sample
Means  |  963



170. Distribution of Sample 
Means (1 of 4) 

 

Learning Objectives 

• Describe the sampling distribution of sample 
means. 

• Draw conclusions about a population mean from a 
simulation. 

How Sample Means Vary in Random Samples 

In Inference for Means, we work with quantitative variables, so the 
statistics and parameters will be means instead of proportions. 

We begin this module with a discussion of the sampling 
distribution of sample means. Our goal is to understand how sample 
means vary when we select random samples from a population with 
a known mean. We did this same type of thinking with sample 
proportions in the module Linking Probability to Statistical Inference 
to understand the distribution of sample proportions. Ultimately, 
we develop a probability model based on this sampling distribution. 
We use the probability model with an actual sample mean to test 
a claim about population mean or to estimate a population mean. 
This task is similar to the type of work we did in Inference for 
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One Proportion with proportions when we tested hypotheses and 
created confidence intervals. 

Example 

Birth Weights 

 

The World Health Organization (WHO) monitors many 
variables to assess a population’s overall health. One of 
these variables is low birth weight. A birth weight under 
2,500 grams is a low birth weight. Low birth weight is a 
categorical variable because the birth weight is either 
under 2,500 grams or it is not. The WHO collects data from 
hospitals and other health-care institutions and can use 
this sample data to find a confidence interval to estimate 
the proportion of all babies in a country with a low birth 
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weight. This type of inference comes from Inference for One 
Proportion. 

In this module, we work with quantitative variables. In 
this example, we use birth weight as a quantitative variable. 
To analyze the quantitative variable birth weight, we use 
means. 

Suppose that babies in a town had a mean birth weight of 
3,500 grams in 2005. This year, a random sample of 9 
babies has a mean weight of 3,400 grams. 

• The 3,500 is a parameter from a population. We use 
the Greek letter µ to represent it: µ = 3,500 grams. 

• The 3,400 is a statistic from a sample, so we write 
 = 3,400 grams. 

Obviously, this sample weighs less on average than the 
population of babies in the town. A decrease in the town’s 
mean birth weight could indicate a decline in overall health 
of the town. But does this sample give strong evidence that 
the town’s mean birth weight is less than 3,500 grams this 
year? 

To answer this question, we need to understand how 
much the means from random samples vary. Would a 
sample be likely – or unlikely – to have a mean birth weight 
of 3,400 grams if the mean weight of all the babies is 3,500 
grams? 

We outline this investigation in the following diagram: 

966  |  Distribution of Sample Means (1 of 4)



 

As before, the logic of inference is the same. Begin with a 
population with µ = 3,500, and take random samples of 9 
babies at a time. 

• If a sample mean of 3,400 is likely to occur when 
sampling from a population with µ = 3,500, then this 
sample could have come from a population with a 
mean of 3,500. The evidence from the sample 
therefore is not strong enough to reject the idea that 
µ = 3,500. 

• If a sample mean of 3,400 is unlikely when sampling 
from a population with µ = 3,500, then the sample 
provides evidence that the mean weight for all babies 
in the population is less than 3,500. 

Likely or unlikely? It depends on how much the sample 
means vary. We need to investigate the sampling 
distribution of sample means. 

Learn By Doing 

Refer to the previous example. These questions focus on 
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how sample mean birth weights will vary. Use the 
simulation below to select a random sample of 9 babies 
from the town. Assume µ = 3,500. Repeat many times to 
observe how the mean birth weights for the samples vary. 
Then answer the questions. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 
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Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

In the next example, we predict what happens in the long run when 
we select many, many random samples of 9 babies at a time from a 
population with a mean birth weight of 3,500 grams. Then we 
watch a simulation to see if our predictions are correct. 

Example 

Predicting the Behavior of Mean Birth 
Weights 

Note: Means of samples randomly selected from a 
population are consequently random variables themselves 
because the means of random samples vary unpredictably 
in the short run but have a predictable pattern in the long 
run. Based on our intuition, what we experienced with the 
simulation, and what we learned about the behavior of 
samples in previous modules, we might expect the 
following about the distribution of sample means that come 
from a population where µ = 3,500: 
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Center: Some sample means will be on the low side – say 
3,000 grams or so – while others will be on the high side – 
say 4,000 grams or so. In repeated sampling, we might 
expect that the random samples will average out to the 
underlying population mean of 3,500 grams. In other 
words, the mean of the sample means will be µ. This is 
exactly what we observed in the case of proportions in 
Linking Probability to Statistical Inference. There, the mean 
of sample proportions was the population proportion. 

Spread: For large samples, we might expect that sample 
means will not stray too far from the population mean of 
3,500. Sample means lower than 3,000 or higher than 4,000 
might be surprising. For smaller samples, we would be less 
surprised by sample means that varied quite a bit from 
3,500. In others words, we might expect greater variability 
in sample means for smaller samples. So sample size again 
plays a role in the spread of the distribution of sample 
statistics, just as we observed for sample proportions. 

Shape: Sample means closest to 3,500 will be the most 
common, with sample means far from 3,500 in either 
direction progressively less likely. In other words, the shape 
of the distribution of sample means should be somewhat 
normal. This, again, is what we saw when we looked at 
sample proportions. 

The discussion of shape, center, and spread here is not very specific. 
We work toward making these statements more specific over the 
next two pages. 

Now let’s see if our predictions about the sampling distribution 
are correct. In the next simulation, we randomly select thousands of 
random samples of 9 babies each. 
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WalkThrough Simulation 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

The distribution of the values of the sample mean  in repeated 
samples is called the sampling distribution of . 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=195 

At this point, you may be wondering if we should use a larger sample 
to answer our question. Will our conclusion change if we increase 
the number of babies in the sample? We investigate this question 
next. 
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171. Distribution of Sample 
Means (2 of 4) 

 

Learning Objectives 

• Describe the sampling distribution of sample 
means. 

Our next goal is to determine how the size of the sample affects the 
variability we see in sample means. 

Example 

Sample Size Affects Variability of Sample 
Means 

We assumed that the population of individual babies has 
a mean of µ = 3,500 grams and a standard deviation of σ = 
500 grams. We selected a random sample of babies to test 
our assumptions about the population. 

We saw previously that for this population of babies, it 
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was not surprising to see a random sample of 9 babies with 
a mean birth weight of 3,400 grams. So a sample with a 
mean of 3,400 does not suggest that the town’s mean birth 
weight is less than 3,500 grams this year. 

What if we increase the sample size? Will our conclusion 
change? That is, if the mean birth weight of 3,400 grams 
comes from a larger sample of babies, does the sample 
provide stronger evidence that the town’s mean birth weight 
is less than 3,500 grams? 

To investigate this question, we ran the simulation for 
different sample sizes. For each sample size, we collected 
1,000 random samples and recorded the sample means. 

When we compare the histograms of sample means, we 
notice the following: 

• Center: The center is not affected by sample size. 
The mean of the sample means is always 
approximately the same as the population mean µ = 
3,500. 

• Spread: The spread is smaller for larger samples, so 
the standard deviation of the sample means 
decreases as sample size increases. This is not 
surprising because we observed a similar trend with 
sample proportions. 

• Shape: The sampling distributions all appear 
approximately normal. This is not surprising because 
the distribution of birth weights in the population has 

Distribution of Sample Means (2 of 4)  |  975



a normal shape. 

Based on the histograms, it appears that sample size will 
change our conclusion about the population’s mean birth 
weight this year. Suppose our sample mean of 3,400 grams 
came from a random sample of 100 babies. Means from 
samples this large did not vary much. We marked this 
sample result in a histogram for samples of size 100. 

For n = 100, a sample mean of 3,400 grams is an unlikely 
result. It gives fairly strong evidence that the population’s 
mean birth weight is less than 3,500 grams. 

From advanced probability theory, we have a probability model for 
the sampling distribution of sample means. The model reinforces 
what we have already observed about the center and gives more 
precise information about the relationship between sample size and 
spread. 

The Theoretical Probability Model for the 
Sampling Distribution of Sample Means 

Suppose a population has a mean µ and a standard deviation of σ. 
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The distribution of all possible sample means from this population 
will have a mean of µ and a standard deviation of 

. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=196 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=196 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=196 

Let’s compare and contrast what we know about the sampling 
distributions for sample means and sample proportions. 

Sampling Distribution 

Variable Parameter Statistic Center Spread Shape 

Categorical 
(example: 
left-handed 
or not) 

p = 
population 
proportion 

 = 
sample 
proportion 

p 
Normal when 
np ≥ 10 and 
n(1 – p) ≥ 10 

Quantitative 
(example: 
age) 

μ = 
population 
mean, σ = 
population 
standard 
deviation 

 = 
sample 
mean 

μ 

When will the 
distribution of 
sample means 
be 
approximately 
normal? 

We investigate the conditions that guarantee a normal sampling 
distribution for sample means on the next page. 
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172. Distribution of Sample 
Means (3 of 4) 

 

Learning Objectives 

• Describe the sampling distribution of sample 
means. 

Shape of the Sampling Distribution of Means 

Now we investigate the shape of the sampling distribution of sample 
means. When we discussed the sampling distribution of sample 
proportions, we learned that this distribution is approximately 
normal if np ≥ 10 and n(1 – p) ≥ 10. In other words, we had a guideline 
based on sample size for determining the conditions under which 
we could use a normal curve to do probability calculations for 
sample proportions. 

Now we investigate these questions: 

• When will the distribution of sample means be approximately 
normal? 

• Does it depend on the size of the sample? 
• What happens if the distribution of the variable in the 

population is heavily skewed? 
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The following simulation video helps us investigate these questions. 

WalkThrough Simulation 

A YouTube element has been excluded from this version of the 

text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=197 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=197 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=197 

Comment 

Are you surprised that a variable with a skewed distribution in the 
population can have a sampling distribution that is approximately 
normal? This discovery is probably the single most important result 
presented in introductory statistics courses. It is called the central 
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limit theorem, which says that for large samples, the sampling 
distribution of sample means is approximately normal. This 
theorum is important! Inference procedures, such as hypothesis 
tests and confidence intervals, are based on a normal model for 
the sampling distribution. The central limit theorem assures us that 
we can use a normal probability model for sample means without 
knowing anything about the shape of the distribution of the variable 
in the population. All we have to do is collect large samples. 

How large a sample size do we need to assume that sample means 
will be normally distributed? It really depends on the population 
distribution, as we saw in the simulation. The more skewed the 
distribution in the population, the larger the samples we need in 
order to use a normal model for the sampling distribution. 

The general guideline is that samples of size greater than 30 
will have a fairly normal distribution regardless of the shape of the 
distribution of the variable in the population. But if a population is 
strongly skewed, it is safer to use larger samples. 

Learn By Doing 

The distribution of incomes is strongly skewed to the 
right for individuals in the U.S. The following histograms 
represent mean income from 200 samples randomly 
selected from the U.S. population. One histogram is based 
on samples of size of n = 4, one on samples of size of n = 40, 
and one on samples of size of n = 100. 
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https://assessments.lumenlearning.com/assessments/
3680 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=197 

Summary 

• Let’s say we have a quantitative data set from a population with 
mean μ and standard deviation σ.The model for the theoretical 
sampling distribution of means of all random samples of size n 
has the following properties: 

◦ The mean of the sampling distribution of means is μ. 
◦ The standard deviation of the sampling distribution of 

means is . 

▪ Notice that as n grows, the standard deviation of the 
sampling distribution of means shrinks. 

• For large enough sample size, the sampling distribution of 
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means is approximately normal (even if population is not 
normal). 

◦ If a variable has a skewed distribution for individuals in the 
population, a larger sample size is needed to ensure that 
the sampling distribution has a normal shape. 

◦ The general rule is that if n is more than 30, then the 
sampling distribution of means will be approximately 
normal. However, if the population is already normal, then 
any sample size will produce a normal sampling 
distribution. 

Comment 

Notice that the size of the population is not mentioned in our 
discussion of sampling distributions. From our discussion, we know 
the following: 

• The means from larger samples have less variability, so larger 
samples give more accurate estimates of the population mean. 

• The means from larger samples have a distribution with a 
shape that is closer to normal. 

These statements are true regardless of the size of the population as 
long as the population is large. To illustrate this point, we compare 
a distribution of sample means from two populations of different 
sizes. Population A has 10,000 newborns. Population B has 20,000 
newborns. For each population, the mean and standard deviation of 
individual birth weights is the same: μ = 3,500 and σ = 500. 

We selected 525 random samples of 100 babies from each 
population and made a histogram of the sample means. We did 
this twice for population A, so two of the histograms represent 525 
samples from the same population. As expected, there are some 
differences in the samples collected due to random chance. 
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Comparing these two histograms gives us a sense of how much 
variation we can expect from the process of selecting random 
samples. Notice that the histogram of sample means from the larger 
population B has a similar shape, center, and spread to the 
histograms from population A. 

 

What’s the Main Point? 

The size of the population does not affect the variability of the 
sample means. Size matters if we are talking about sample size for 
random samples, but size does not matter if we are talking about 
population size as long as the population is large. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=197 
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173. Distribution of Sample 
Means (4 of 4) 

 

Learning Objectives 

• Estimate the probability of an event using a normal 
model of the sampling distribution. 

Let’s compare what we have learned about sampling distributions 
for proportions and for means. 

Sampling Distribution 

Variable Parameter Statistic Center Spread Shape 

Categorical 
(example: 
left-handed 
or not) 

p = 
population 
proportion 

 = 
sample 
proportion 

p 
Normal if 
np ≥ 10 
and n(1 – 
p) ≥ 10 

Quantitative 
(example: 
age) 

μ = 
population 
mean, σ = 
population 
standard 
deviation 

 = 
sample 
mean 

μ 

Normal if 
n > 30 
(always 
normal if 
population 
is normal) 

Now we know the conditions that allow us to use a normal model 
for the sampling distribution of means. As we have done before, we 
now convert sample means to z-scores and use a standard normal 
curve to find probabilities and identify unusual sample means. 
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Normal Model Simulation Useful Again 

Recall the standard normal model simulation we first used in 
Probability and Probability Distribution. It was our tool for 
converting between intervals of z-scores and probabilities. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=198 

 

Example 

Surprising Heights for Individual 
Basketball Players 

Suppose we have a population of adult male basketball 
players and we know their heights: the mean height is μ = 
190 cm and the standard deviation of their heights is σ = 7.2 
cm. The heights are normally distributed, which is often the 
case with body measurements. 

Would it be surprising to find a randomly chosen player 
from this population with a height of 195 cm? 
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We can answer this question by computing the 
probability that a randomly chosen player from this 
population has height greater than 195 cm. To carry out the 
analysis, let’s use X to denote the height of a randomly 
chosen individual from this population. Since heights are 
normally distributed, we can convert heights to z-scores 
and use our simulation to find the probability P(X > 195). 

1. Convert the interval X > 195 to an interval of 
z-scores.Recall that the z-score of an X-value is the 
number of standard deviations that value is away 
from the mean. The formula is 

So the z-score of X = 195 is 

That means that the interval of X-values “X > 195” 
corresponds to the interval of Z-values “Z > 0.69.” 

2. Convert the interval Z > 0.69 to a probability 
statement.We use the simulation (or some sort of 
technology) for this step. Below is a picture of the 
simulation with the settings for this problem. We 
moved one flag out of the way and the other flag to 
the position Z = 0.69. For a “greater than” probability, 
we want the area to the right of Z = 0.69.
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So we have found that P(X > 195) = P(Z > 0.69) = 

0.2451. 

Conclusion: This probability is not very low (almost 25%). 
We conclude that it would be not be surprising to find a 
randomly chosen individual from this population with a 
height of 195 cm. 
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Example 

Surprising Heights for Samples of 
Basketball Players 

As before, suppose the heights of individual players are 
normally distributed with μ = 190 cm and σ = 7.2 cm. 

Would it be surprising to find a randomly chosen team of 
25 players with a mean height of 195 cm? 

We compute the probability that a random sample of 25 
players has a mean height of 195 cm or more. We have to 
look at the distribution of all sample means for samples of 
size 25. Here’s what we know about this sampling 
distribution: 

• The distribution of sample means is normal, even 
though our sample size is less than 30, because we 
know the distribution of individual heights is normal. 
If the individual heights were not normally 
distributed, we would need a larger sample size 
before using a normal model for the sampling 
distribution. 

• The mean of the sampling distribution is 195 cm, 
the same as the mean of the individual heights. 

• The standard deviation of the sampling distribution 
is

Now we can answer this question by computing the 
probability that a randomly chosen sample of 25 players 
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from this population has mean height greater than 195 cm. 
To carry out the analysis, let’s use  to denote the mean 

height of a random sample of 25 players from this 
population. Because mean heights are normally distributed, 
we can convert mean heights to z-scores and use our 
simulation to find the probability P(  > 195). 

1. Convert the interval  > 195 to an interval of z-

scores.Note that the z-score is the number of 
standard errors the sample mean is from µ. So the 
z-score calculation for the sampling distribution has 
mean μ = 190 and standard deviation 

.The formula for the 
z-score of  is 

So the z-score of  = 195 is 

And the interval of -values “  > 195” 

corresponds to the interval of Z-values “Z > 3.47.” 

2. Convert the interval Z > 3.47 to a probability 
statement.Again, we use the simulation as we did in 
the previous example. Move the left-hand flag out of 
the way and the right-hand flag to Z = 3.47. For a 
“greater than” probability, we want the area to the 
right of Z = 3.47.
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So we have found that 

195)\text{}=\text{}P(Z>3.47)\text{}=\text{}0.0003" 
title="P(\stackrel{¯}{X}>195)\text{}=\text{}P(Z>3.47)\t
ext{}=\text{}0.0003" class="latex mathjax">. 

Conclusion: This probability is very low (much, much less 
than 1%). We conclude that it would be very surprising to 
find a random sample of 25 players from this population 
with a mean height of 195 cm. 

It’s interesting to notice that the height cutoff we used in 
these two examples is the same (195 cm). When considering 
the individual, we concluded that finding a randomly 
chosen individual with height of 195 cm would not be 
surprising. However, when we considered the team, we 
concluded that it would be very surprising to find a random 
sample of 25 players with a mean height of 195 cm. This 
makes sense because as sample size grows, variability 
shrinks (here we considered a sample of size 1 versus a 
sample of size 25). 
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Click here to open the normal simulation in a separate window to 
answer the following questions. 

Learn By Doing 

The annual salary of teachers in a certain state X has a 
mean of μ = $54,000 and standard deviation of σ = $5,000. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=198 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=198 

An interactive or media element has been 
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excluded from this version of the text. You can view it 

online here: https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=198 

 

What Have We Learned Here? 

We need to be careful before using the normal model to find 
probabilities associated with sample means. 

• If the individual values are normally distributed, then the 
sampling distribution of means will be normal for any sample 
size. In this case, we can use the normal model to compute 
probabilities without worrying about the sample size. 

• On the other hand, if the individual values are not normally 
distributed, then we have to make sure the sample size is large 
enough before concluding that the sampling distribution of 
means is approximately normal. The general rule is that the 
sample size should be more than 30 in order for us to feel 
confident that the sampling distribution of means is 
approximately normal (but it really depends on the shape of 
the distribution of individual values). 

Note: The logic of inference in this module is familiar. We make a 
claim about a population mean. We use a random sample to test our 
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claim. We determine whether it is probable that random samples 
have means as extreme as the actual sample. If this is very unlikely, 
then we conclude this sample probably could not have come from 
this population and that the claim about the population mean is 
probably false. We used logic like this in Modules 7, 8, and 9 in the 
context of proportions. In this module, we further develop this idea 
in the context of means. 

Let’s Summarize 

• Many questions regarding quantitative variables require us to 
say something about the mean of a large population. It is often 
necessary to compute statistics from a random sample and use 
them to make an estimate or an inference about the population 
mean. 

• We need to be able to compute the probability that the mean 
of a random sample falls in a given range. This probability 
allows us to draw an inference about the population 
parameter. To compute this probability, we need to understand 
the distribution of all sample means. 

• Let’s say we have a quantitative data set from a population with 
mean µ and standard deviation σ. The model for the theoretical 
sampling distribution of means of all random samples of size n 
has the following properties: 

◦ The mean of the sampling distribution of means is µ. 
◦ The standard deviation of the sampling distribution of 

means is . 

▪ Notice that as n grows, the standard deviation of the 
sampling distribution of means shrinks. It means that 
larger samples give more accurate estimates of 
population means. 

• The central limit theorem states that for large enough sample 
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sizes, the sampling distribution of means is approximately 
normal, even if the population is not normal. 

◦ If a variable has a skewed distribution for individuals in the 
population, a larger sample size is needed to ensure that 
the sampling distribution has a normal shape. 

◦ The general rule is that if n is more than 30, the sampling 
distribution of means will be approximately normal. 
However, if the population is already normal, then any 
sample size will produce a normal sampling distribution. 

• The mechanics of finding a probability associated with a range 
of sample means usually proceeds as follows. 

◦ Convert a sample mean  into a z-score: 
. 

◦ Use technology to find a probability associated with a 
given range of z-scores. 
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174. Introduction: Estimating 
a Population Mean 

What you’ll learn to do: Construct and interpret 
a confidence interval to estimate a population 
mean when conditions are met. 

LEARNING OBJECTIVES 

• Construct a confidence interval to estimate a 
population mean when conditions are met. Interpret 
the confidence interval in context. 

• Interpret the meaning of a confidence level 
associated with a confidence interval. 

• Adjust the margin of error by making changes to 
the confidence level or sample size. 
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175. Estimating a Population 
Mean (1 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
population mean when conditions are met. Interpret 
the confidence interval in context. 

• Interpret the meaning of a confidence level 
associated with a confidence interval. 

In “Estimating a Population Mean,” we focus on how to use a sample 
mean to estimate a population mean. This is the type of thinking 
we did in Modules 7 and 8 when we used a sample proportion to 
estimate a population proportion. Let’s take a moment to review 
what we learned in the modules Linking Probability to Statistical 
Inference and Inference for One Proportion, and then we’ll see how it 
relates to the current module. 

• In Linking Probability to Statistical Inference, we noted that 
random samples vary, so we expect to see variability in sample 
proportions. In the section “Distribution of Sample Means” in 
that module, we made the same observations about sample 
means. In both cases, a normal model is a good fit for the 
sampling distribution when appropriate conditions are met. 

• We also noted in that module that a sample proportion is an 
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estimate for the population proportion. We do not expect the 
sample proportion to equal the population proportion, so there 
is some error. The error is due to random chance. Likewise, a 
sample mean is an estimate for the population mean, but there 
will be some error due to random chance. 

Comment 

Recall that, in Inference for One Proportion, we adjusted the 
standard error by replacing p with the sample proportion. Doing 
so made sense because the goal of the confidence interval is to 
estimate p. So the margin of error in the confidence interval formula 
changed. Here is the adjusted formula. 

This adjustment changed the normality conditions. We use this 
adjusted confidence interval to estimate p when the successes and 
failures in the actual sample are at least 10. 

We will eventually have to adjust the standard error for the 
sampling distribution of sample means, too. It makes sense because 
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in many situations we will not know the population standard 
deviation, σ. This adjustment is more complicated than the 
adjustment to standard error for sample proportions, so before we 
do it, let’s practice finding the confidence interval for µ assuming 
we know σ. 

Assuming we know σ is realistic when a lot of previous research 
has been done. For example, when we are estimating height, weight, 
or scores on a standardized test, previous research gives us reliable 
values for σ. 

Example 

Estimating Mean SAT Math Score 

The SAT is the most widely used college admission exam. 
(Most community colleges do not require students to take 
this exam.) The mean SAT math score varies by state and by 
year, so the value of µ depends on the state and the year. 
But let’s assume that the shape and spread of the 
distribution of individual SAT math scores in each state is 
the same each year. More specifically, assume that 
individual SAT math scores consistently have a normal 
distribution with a standard deviation of 100. 

An educational researcher wants to estimate the mean 
SAT math score (μ) for his state this year. The researcher 
chooses a random sample of 650 exams in his state. The 
average score is 475 (so  = 475). Estimate the mean SAT 
math score in this state for this year. 
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We answer this question by computing and interpreting a 
confidence interval. 

Checking conditions: 

From our work in “Distribution of Sample Means,” we 
know that a normal model is a good fit for the distribution 
of sample means from random samples if one of two 
conditions is met: 

• The population of individual values is normal (in 
which case the sample size is not important). 

• If we do not know if the population of individual 
values is normal, then we must have a large sample 
size (more than 30). 

Because we assume that the distribution of individual 
SAT math scores is normal in this example, a normal model 
is also a good fit for the distribution of sample means. Even 
if the population distribution had not been normal, the 
sample size is large enough that the normal distribution 
would still apply to the sample means. So we can use the 
confidence interval formula given above. 

Finding the margin of error: 

Keep in mind that the sample mean, , is only a single-
value estimate for the population mean, μ. Because it 
comes from a random sample, we expect there to be some 
error in the estimate. But how much error should we expect? 

We know that the sample distribution of means is 
approximately normal because conditions are met. Recall 
that in a normal model, 95% of the values fall within 2 
standard deviations of the mean, so we use 2 standard 
errors for our margin of error. This was part of the 
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empirical rule from the module Probability and Probability 
Distribution. 

Finding the confidence interval: 

We are 95% confident that  falls within 7.8 points of μ. 
This also means that we are 95% confident that μ falls 
within 7.8 points of . So we construct a 95% confidence 
interval from this sample mean by adding and subtracting 
7.8 points. The 95% confidence interval is shown. 

Conclusion: 

We are 95% confident that the mean SAT math score in 
this state this year is between 467.2 and 484.8. Recall from 
our previous work that being 95% confident means this 
method, in the long run, captures the true population mean 
(μ) about 95% of the time. 

Summary 

If we want to estimate µ, a population mean, we want to calculate a 
confidence interval. The 95% confidence interval is: 

We can use this formula only if a normal model is a good fit for the 
sampling distribution of sample means. If the sample size is large (n 
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> 30), we can use a normal model. If the sample size is not greater 
than 30, then we can use a normal model only if the variable is 
normally distributed in the population. As always, we must have a 
random sample. If the sample is not random, we cannot use it to 
estimate µ. 

We say we are 95% confident that this interval contains µ, which 
means that in the long run, 95% of these confidence intervals 
contain µ. 

Learn By Doing 

Constructing a Confidence Interval for 
Pregnancy Length 

Is smoking during pregnancy associated with premature 
births? To investigate this question, researchers selected a 
random sample of 114 pregnant women who were smokers. 
The average pregnancy length for this sample of smokers 
was 260 days. From a large body of research, it is known 
that length of human pregnancy has a standard deviation of 
16 days. The researchers assume that smoking does not 
affect the variability in pregnancy length. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=200 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=200 

Comment 

In our work with confidence intervals for estimating a population 
mean, µ, we require the population standard deviation, σ, to be 
known. In practice, σ usually is unknown. However, in some 
situations, especially when a lot of research has been done on the 
quantitative variable whose mean we are estimating (such as IQ, 
height, weight, scores on standardized tests), it is reasonable to 
assume that σ is known. On the next page, we learn how to proceed 
when σ is unknown. 
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176. Estimating a Population 
Mean (2 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
population mean when conditions are met. Interpret 
the confidence interval in context. 

• Interpret the meaning of a confidence level 
associated with a confidence interval. 

• Adjust the margin of error by making changes to 
the confidence level or sample size. 

On the previous page, we used a confidence interval to estimate the 
population mean, µ. For this confidence interval, we had to supply 
a guess for the population standard deviation, σ, based on previous 
studies. It may have occurred to you that if we do not know µ, it is 
unlikely that we know σ. So we now take a different approach. We 
estimate σ using the sample standard deviation, s. 

This is the same type of adjustment we used in Inference for 
One Proportion when we had to adjust our model of the sampling 
distribution. The standard error of the sampling distribution is 

. (If we knew , then we wouldn’t need 
to build a confidence interval.) We approximate  by the sample 
proportion, . 

Our process for adjusting the confidence interval for estimating 
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µ is similar. We use the sample standard deviation, s, to estimate 
σ. The standard error for the sampling distribution 

 becomes 
. So we adjust the margin of error in the confidence interval formula, 
but this adjustment is not as straightforward as our work with 
proportions. 

This estimate for σ introduces more uncertainty in the process. 
The problem is worse with smaller samples because the sample 
standard deviations vary more. For small samples, s is a worse 
approximation for σ. Unfortunately, this approximation makes the 
normal model a bad fit and inappropriate for determining critical 
values. We instead use what is called a t-model for this purpose. 

Introduction to the T-Model 

Here is the formula for the T-score. We also include the z-score for 
comparison. The formulas are very similar. 

The distribution of z-scores is the standard normal curve, with 
mean of 0 and standard deviation of 1. The distribution of T-scores 
depends on the sample size, n. There is a different T-model for 
every n. So the T-model is a family of curves. 

Instead of referring to n to specify which T-model to use, we refer 
to the degrees of freedom, or df for short. For Topics 10.2 and 10.3, 
the number of degrees of freedom is 1 less than the sample size. That 
is, df = n – 1. 

In summary, a normal model is defined by its mean and standard 
deviation. A T-model is a family of curves defined by the degrees of 
freedom. 

Let’s take a look at a few T-model curves (for various df) to see 
how they compare to the normal model. 
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We can see from the picture that as df grows, the T-model gets 
closer to the standard normal model. 

Similarities between T-model and standard normal model: 

• Symmetric with a central peak, bell-shaped. 
• Centered at 0. 
• The larger the degrees of freedom, the closer the T-model is to 

the standard normal model. 

Difference between T-model and standard normal model: 

• The T-model has more spread than the standard normal 
model. 

• The T-model has more probability in the tails and less in the 
center than the standard normal model. We can see this in the 
fatter tails and lower central peak of the T-model. 

When is a T-model a good fit for the sampling distribution of 
sample means? 

Check these conditions before using the T-model: 

• Use the T-model if σ (the population standard deviation) is 
unknown. If σ is known, then use the normal model instead of 
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the T-model. 
• Use the T-model if variable values are normally distributed in 

the population. If this is not true, then make sure the sample 
size is large (more than 30). 

Example 

Cable Strength 

A group of engineers developed a new design for a steel 
cable. They need to estimate the amount of weight the 
cable can hold. The weight limit will be reported on cable 
packaging. 

The engineers take a random sample of 45 cables and 
apply weights to each of them until they break. The mean 
breaking weight for the 45 cables is  = 768.2 lb. The 
standard deviation of the breaking weight for the sample is 
s = 15.1 lb. 

What should the engineers report as the mean amount of 
weight held by this type of cable? 

Let’s use these sample statistics to construct a 95% 
confidence interval for the mean breaking weight of this 
type of cable. 

Checking conditions: 

Since we do not know the standard deviation of breaking 
weights of all of the cables (the population parameter σ), we 
use the sample standard deviation (s) as an approximation 
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for σ. Since we don’t know σ, we must use the T-
distribution to model the sampling distribution of means. 

Is the T-model a good fit for the sampling distribution? 

Yes, because the conditions are met: 

• σ is unknown. 
• The sample size is large enough. 

Finding the standard error: 

As usual, we start by estimating the standard error. This 
estimate comes from the formula 

. However, since we don’t know 
σ, we use s = 15.1 as an approximation for σ. So our estimate 
for the standard error of all sample means is 

. 

Finding the margin of error: 

To find the margin of error, we need to find the critical T-
value that corresponds to a 95% confidence level. This is 
just like the critical Z-value when we built confidence 
intervals for proportions, except that it comes from the T-
model instead of the standard normal model. 

We will use technology to find the critical T-value. There 
are a number of tools for doing this. Some books will also 
give you the option to use printed tables of values. Here we 
will use a simulation that gives the T-model based on 
degrees of freedom. We want the T-values that cut off the 
central 95% of the area under the curve. It will look as 
follows. 
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Using the simulation, we see that the critical T-value for a 
95% confidence interval with 44 degrees of freedom is Tc = 
2.015, which means our margin of error for this confidence 
interval is 

Note: For 95% confidence, the empirical rule 
approximates the critical Z-value as 2. The empirical rule is 
based on the normal model. Using the T-model for df = 44, 
the critical T-value (2.015) is very close to 2. This makes 
sense because for larger df, the T-model is very close to the 
standard normal model. We will see that the critical T-value 
differs more from the critical Z-value when the sample 
sizes are small. 

Finding the confidence interval: 
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We have all the pieces to build the confidence interval. In 
our example, the confidence interval is 

Conclusion: 

We are 95% confident that the mean breaking weight for 
all cables of this type is between 763.7 lb and 772.7 lb. 

Confidence intervals at the 95% confidence level are common in 
practice. But 95% is not the only confidence level we use. 
Particularly in situations that involve safety issues, such as the 
previous example, people often prefer to estimate population means 
with 99% confidence intervals. Let’s do some exploration with 
technology to see how changes in the confidence level affect the 
confidence interval. 

Click here to open this simulation in its own window. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 
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Learn By Doing 

How Much Alcohol Do College Students 
Drink? 

According to the website 
www.collegedrinkingprevention.gov, “About 25 percent of 
college students report academic consequences of their 
drinking including missing class, falling behind, doing 
poorly on exams or papers, and receiving lower grades 
overall.” A statistics student is curious about drinking habits 
of students at his college. He wants to estimate the mean 
number of alcoholic drinks consumed each week by 
students at his college. He plans to use a 90% confidence 
interval. He surveys a random sample of 71 students. The 
sample mean is 3.93 alcoholic drinks per week. The sample 
standard deviation is 3.78 drinks. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=201 

 

1016  |  Estimating a Population Mean (2 of 3)

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=201#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=201#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=201#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=201#pb-interactive-content


177. Estimating a Population 
Mean (3 of 3) 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
population mean when conditions are met. Interpret 
the confidence interval in context. 

• Adjust the margin of error by making changes to 
the confidence level or sample size. 

Structure of a Confidence Interval 

Let’s take a closer look at the parts of the confidence interval. 
Remember that this is a confidence interval for a population mean. 
We use this formula when the population standard deviation is 
unknown. 
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Let’s remind ourselves how the confidence interval formula 
relates to the graph of the confidence interval on a number line. 

The confidence interval shown below is a 95% confidence interval 
for a sample of size n = 25 (so df = 24), with sample mean  = 9 and 
sample standard deviation of s = 3. The critical T-value for a 95% 
confidence interval with a df = 24 is 2.064. 

The confidence interval is 9 ± 1.24. We are 95% confident that µ 
lies between 7.76 and 10.24. 

Note: 
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• The sample mean (9 in this example) is at the center of the 
interval. 

• The margin of error (labeled ME and equal to 1.24 in this 
example) is the distance that the interval extends to the left 
and right of the sample mean. 

• The interval width is the length of the entire interval on the 
number line. The interval width is always twice the margin of 
error. 

Let’s quickly review how the precision of a confidence interval 
relates to the margin of error: 

• An interval gives a more precise estimate when the interval is 
narrower. In other words, the margin of error is smaller. 

• An interval gives a less precise estimate when the interval is 
wider. In other words, the margin of error is larger. 

We know that a higher confidence level gives a larger margin of 
error, so confidence level is also related to precision. 

• Increasing the confidence in our estimate makes the 
confidence interval wider and therefore less precise. 

• Decreasing the confidence in our estimate makes the 
confidence interval narrower, and therefore more precise. 

Confidence interval estimates are useful when they have the right 
balance of confidence and precision. Typical confidence levels used 
in practice are 90%, 95%, and 99%. When we need to be really sure 
about our estimates, such as in life-and-death situations, we choose 
a 99% confidence level. So if nothing else changes, we settle for less 
precise estimates when we need a high level of confidence. 

In our discussion about the structure of confidence intervals, we 
said choosing a higher level of confidence means that we sacrifice 

Estimating a Population Mean (3 of 3)  |  1019



some precision. This is true only if nothing else changes. But there 
is one way to keep a high level of confidence without sacrificing 
precision: Increase the sample size. We investigate the impact of 
sample size on the confidence interval next. 
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Example 

Cable Strength Revisited 

Recall the engineers who are trying to determine the 
breaking weight of a cable. In that example, we had a 
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random sample of 45 cables with a mean breaking weight of 
768.2 lb and a standard deviation of 15.1 lb. From that 
sample we computed a 95% confidence interval for the 
mean breaking weight of all such cables. Here are the 
important numbers we found from that calculation on the 
previous page: 

Now let’s increase the sample size and investigate the 
impact on the confidence interval. We calculate the 
confidence interval for a larger sample of 101 cables (n = 
101). 

Sample size affects our calculations in two ways: 

• The sample size (n) appears in our formula for 
standard error. 

• The critical T-value depends on degrees of 
freedom, and df = n – 1. 

Finding the standard error: 

We approximate the standard error of all sample means 
as follows: 

Note: The standard error is smaller when the sample size 
is larger. We were expecting this because we know there is 
less variability in sample means when the samples are 
larger. 

Finding the critical T-value: 

To find the critical T-value, we use the simulation. We set 
the df to 100 and the central probability to 0.95. We see that 
the critical T-value is 1.984. 
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Note: Increasing the sample size decreased the critical T-
value (the T-value went from 2.015 to 1.984 when we 
increased the sample size). You might also notice that both 
of the critical T-values for 95% confidence are larger than 
the critical Z-value for 95% confidence, which is 
approximately 1.96. This makes sense because the T-models 
are wider than the the standard normal curve. 

Finding the margin of error. 

Here is the margin of error calculation: 

Finding the confidence interval. 

Here is the confidence interval calculation: 
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Side-by-side comparison: 

Let’s take a look at these two intervals to study the 
effects of changing the sample size. 

Increasing the sample size had the following effects on 
the confidence interval estimate: 

• Decreased standard error 
• Decreased critical T-value 
• Decreased margin of error and hence decreased 

the interval width 
• Improved interval precision 

Comment 

In the real world, increasing the sample size is not always possible. 
Sometimes collecting a sample is very expensive. If the study has 
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budgetary constraints, which is usually the case, selecting a larger 
sample may be too expensive. 

Learn By Doing 

Appropriate Conclusions 

For each of the following situations, decide if it is valid or 
invalid to use a confidence interval to estimate the 
population mean. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=202 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=202 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=202 

Let’s Summarize 

• A confidence interval approximates a population mean by 
giving us a range of values that likely contains the population 
mean, μ. The general form of the confidence interval is 

• To say that we are “95% confident that the population mean 
falls within our confidence interval” really means that “about 
95% of all confidence intervals computed in this way will 
capture the true population mean.” 

• We can use a sample mean to build a confidence interval as an 
estimate for μ. There are two possible cases: 

◦ Suppose the population standard deviation, σ, is known. 
We check the conditions for use of the normal model. 
Conditions: The variable must be normally distributed in 
the population, or the sample size is large enough (n &gt; 
30). In this case, the confidence interval has the form 

. 
◦ Suppose the population standard deviation, σ, is not 

known. Then we use the sample standard deviation, s, as 
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an approximation for σ. We check the conditions for use of 
the T-model. Conditions are the same: The variable must 
be normally distributed in the population, or the sample 
size is large enough (n &gt; 30). In this case, the 
confidence interval has the form 

 .When using the T-model to 
find the critical value, we need to select an appropriate 
number of degrees of freedom (df). The number of degrees 
of freedom is 1 less than the sample size (df = n – 1). 

• As we have seen with other confidence intervals, the width of a 
confidence interval is twice the margin of error. The smaller 
the margin of error, the more narrow the confidence interval 
and the more precise the estimate of µ. 
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178. Introduction: Hypothesis 
Test for a Population Mean 

What you’ll learn to do: Conduct and interpret 
results from a hypothesis test about a population 
mean. 

LEARNING OBJECTIVES 

• Under appropriate conditions, conduct a 
hypothesis test about a population mean. State a 
conclusion in context. 

• Under appropriate conditions, conduct a 
hypothesis test about a mean for a matched pairs 
design. State a conclusion in context. 

• Interpret the P-value as a conditional probability. 
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179. Hypothesis Test for a 
Population Mean (1 of 5) 

 

Learning Objectives 

• Recognize when to use a hypothesis test or a 
confidence interval to draw a conclusion about a 
population mean. 

• Under appropriate conditions, conduct a 
hypothesis test about a population mean. State a 
conclusion in context. 

Introduction 

In Inference for Means, our focus is on inference when the variable 
is quantitative, so the parameters and statistics are means. In 
“Estimating a Population Mean,” we learned how to use a sample 
mean to calculate a confidence interval. The confidence interval 
estimates a population mean. In “Hypothesis Test for a Population 
Mean,” we learn to use a sample mean to test a hypothesis about a 
population mean. 

We did hypothesis tests in earlier modules. In Inference for One 
Proportion, each claim involved a single population proportion. In 
Inference for Two Proportions, the claim was a statement about 
a treatment effect or a difference in population proportions. In 
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“Hypothesis Test for a Population Mean,” the claims are statements 
about a population mean. But we will see that the steps and the logic 
of the hypothesis test are the same. Before we get into the details, 
let’s practice identifying research questions and studies that involve 
a population mean. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 

Example 

Cell Phone Data 

Cell phones and cell phone plans can be very expensive, 
so consumers must think carefully when choosing a cell 
phone and service. This decision is as much about choosing 
the right cellular company as it is about choosing the right 
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phone. Many people use the data/Internet capabilities of a 
phone as much as, if not more than, they use voice 
capability. The data service of a cell company is therefore 
an important factor in this decision. In the following 
example, a student named Melanie from Los Angeles 
applies what she learned in her statistics class to help her 
make a decision about buying a data plan for her 
smartphone. 

Melanie read an advertisement from the Cell Phone 
Giants (CPG, for short, and yes, we’re using a fictitious 
company name) that she thinks is too good to be true. The 
CPG ad states that customers in Los Angeles get average 
data download speeds of 4 Mbps. With this speed, the ad 
claims, it takes, on average, only 12 seconds to download a 
typical 3-minute song from iTunes. 

Only 12 seconds on average to download a 3-minute song 
from iTunes! Melanie has her doubts about this claim, so 
she gathers data to test it. She asks a friend who uses the 
CPG plan to download a song, and it takes 13 seconds to 
download a 3-minute song using the CPG network. Melanie 
decides to gather more evidence. She uses her friend’s 
phone and times the download of the same 3-minute song 
from various locations in Los Angeles. She gets a mean 
download time of 13.5 seconds for her sample of downloads. 

What can Melanie conclude? Her sample has a mean 
download time that is greater than 12 seconds. Isn’t this 
evidence that the CPG claim is wrong? Why is a hypothesis 
test necessary? Isn’t the conclusion clear? 

Let’s review the reason Melanie needs to do a hypothesis 
test before she can reach a conclusion. 

Why should Melanie do a hypothesis test? 
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Melanie’s data (with a mean of 13.5 seconds) suggest that 
the average download time overall is greater than the 12 
seconds claimed by the manufacturer. But wait. We know 
that samples will vary. If the CPG claim is correct, we don’t 
expect all samples to have a mean download time exactly 
equal to 12 seconds. There will be variability in the sample 
means. But if the overall average download time is 12 
seconds, how much variability in sample means do we 
expect to see? We need to determine if the difference 
Melanie observed can be explained by chance. 

We have to judge Melanie’s data against random samples 
that come from a population with a mean of 12. For this 
reason, we must do a simulation or use a mathematical 
model to examine the sampling distribution of sample 
means. Based on the sampling distribution, we ask, Is it 
likely that the samples will have mean download times that 
are greater than 13.5 seconds if the overall mean is 12 
seconds? This probability (the P-value) determines whether 
Melanie’s data provides convincing evidence against the 
CPG claim. 

Now let’s do the hypothesis test. 

Step 1: Determine the hypotheses. 

As always, hypotheses come from the research question. 
The null hypothesis is a hypothesis that the population 
mean equals a specific value. The alternative hypothesis 
reflects our claim. The alternative hypothesis says the 
population mean is “greater than” or “less than” or “not 
equal to” the value we assume is true in the null hypothesis. 

Melanie’s hypotheses: 

H0: It takes 12 seconds on average to download 
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Melanie’s song from iTunes with the CPG network in 
Los Angeles. 

Ha: It takes more than 12 seconds on average to 
download Melanie’s song from iTunes using the CPG 
network in Los Angeles. 

We can write the hypotheses in terms of µ. When we do 
so, we should always define µ. Here μ = the average number 
of seconds it takes to download Melanie’s song on the CPG 
network in Los Angeles. 

H0: μ = 12 
Ha: μ > 12 

Step 2: Collect the data. 

To conduct a hypothesis test, Melanie knows she has to 
use a t-model of the sampling distribution. She thinks 
ahead to the conditions required, which helps her collect a 
useful sample. 

Recall the conditions for use of a t-model. 

• There is no reason to think the download times are 
normally distributed (they might be, but this isn’t 
something Melanie could know for sure). So the 
sample has to be large (more than 30). 

• The sample has to be random. Melanie decides to 
use one phone but randomly selects days, times, and 
locations in Los Angeles. 

Melanie collects a random sample of 45 downloads by 
using her friend’s phone to download her song from iTunes 
according to the randomly selected days, times, and 
locations. 

Hypothesis Test for a Population Mean (1 of 5)  |  1033



Melanie’s sample of size 45 downloads has an average 
download time of 13.5 seconds. The standard deviation for 
the sample is 3.2 seconds. Now Melanie needs to determine 
how unlikely this data is if CPG’s claim is actually true. 

Step 3: Assess the evidence. 

Assuming the average download time for Melanie’s song is 
really 12 seconds, what is the probability that 45 random 
downloads of this song will have a mean of 13.5 seconds or 
more? 

This is a question about sampling variability. Melanie 
must determine the standard error. She knows the 
standard error of random sample means is 

. Since she has no way of 
knowing the population standard deviation, σ, Melanie uses 
the sample standard deviation, s = 3.2, as an approximation. 
Therefore, Melanie approximates the standard error of all 
sample means (n = 45) to be 

Now she can assess how far away her sample is from the 
claimed mean in terms of standard errors. That is, she can 
compute the t-score of her sample mean. 

The sample mean for Melanie’s random sample is 
approximately 3.14 standard errors above the overall mean 
of 12. We know from previous experience that a sample 
mean this far above µ is very unlikely. With a t-score this 
large, the P-value is very small. We use a simulation of the 
t-model for 44 degrees of freedom to verify this. 
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We want the probability that the sample mean is greater 
than 13.5. This corresponds to the probability that T is 
greater than 3.14. The P-value is 0.0015. 

Step 4: State a conclusion. 

Here the logic is the same as for other hypothesis tests. 
We use the P-value to make a decision. The P-value helps 
us determine if the difference we see between the data and 
the hypothesized value of µ is statistically significant or due 
to chance. One of two outcomes can occur: 

• One possibility is that results similar to the actual 
sample are extremely unlikely. This means the data 
does not fit with results from random samples 
selected from the population described by the null 
hypothesis. In this case, it is unlikely that the data 
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came from this population. The probability as 
measured by the P-value is small, so we view this as 
strong evidence against the null hypothesis. We reject 
the null hypothesis in favor of the alternative 
hypothesis. 

• The other possibility is that results similar to the 
actual sample are fairly likely (not unusual). This 
means the data fits with typical results from random 
samples selected from the population described by 
the null hypothesis. The probability as measured by 
the P-value is large. In this case, we do not have 
evidence against the null hypothesis, so we cannot 
reject it in favor of the alternative hypothesis. 

Melanie’s data is very unlikely if µ = 12. The probability is 
essentially zero (P-value = 0.0015). This means we will rarely 
see sample means greater than 13.5 if µ = 12. So we reject 
the null and accept the alternative hypothesis. In other 
words, this sample provides strong evidence that CPG has 
overstated the speed of its data download capability. 

The following activities give you an opportunity to practice parts of 
the hypothesis testing process for a population mean. Later you will 
have the opportunity to practice the hypothesis test from start to 
finish. 

Learn By Doing 

For the following scenarios, give the null and alternative 
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hypotheses and state in words what µ represents in your 
hypotheses. A good definition of µ describes both the 
variable and the population. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 
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Comment 

In the previous example, Melanie did not state a significance level 
for her test. If she had, the logic is the same as we used for 
hypothesis tests in Modules 8 and 9. To come to a conclusion about 
H0, we compare the P-value to the significance level α. 

• If P ≤ α, we reject H0. We conclude there is significant evidence 
in favor of Ha. 

• If P > α, we fail to reject H0. We conclude the sample does not 
provide significant evidence in favor of Ha. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 

Use this simulation when needed to answer questions below. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=204 
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180. Hypothesis Test for a 
Population Mean (2 of 5) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test about a population mean. State a 
conclusion in context. 

More on Checking Conditions for a T-Test 

In practice, you will often see the use of a t-test with small samples. 
Technically, we can use the t-test with small samples only if we 
know the variable has a normal distribution in the population. But 
this is hard to verify. In addition, no variable has a perfect normal 
distribution. So what does the requirement that the “variable be 
normally distributed in the population” really mean? 

We call a confidence interval or a hypothesis test robust if the 
confidence level or P-value does not change very much when the 
conditions for use of the procedure are not met. 

T-procedures are robust when the variable is not normally 
distributed in the population, as long as the distribution is not 
heavily skewed. But how can we determine if the distribution of the 
variable in the population is heavily skewed? In this introductory 
course, we examine the distribution of the variable in the sample 
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and make an educated guess about what is going on in the 
population. 

Now we investigate this question: Can we tell from a sample 
whether the variable is normally distributed in the population? 

Example 

Variable Skewed in the Population 

Let’s start with a skewed distribution in the population. 
Can we tell that this distribution is not normal by looking at 
random samples? 

The following figure shows the monthly payment on first 
home mortgages for 5,000 people, as reported in the 2000 
U.S. Census. Think of this as data from the population of a 
small town. From this population, we randomly selected 20 
people. We did this three times. Notice that for each 
random sample, the shape of the distribution of the 
monthly payments in the sample is skewed to the right, just 
like the distribution in the population. In 2 of the 3 samples, 
we also see outliers, just as we see in the population. So by 
looking at the sample, we can get a pretty good sense that 
the variable is not normally distributed in the population. 
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In this example, the sample size is less than 30. We can 
use the t-test only if the variable is normally distributed in 
the population. The shape of the distribution in any one of 
these samples suggests that the variable has a skewed 
distribution in the population, so we would not conduct a t-
test with any of these samples. 

Example 

Variable Normal in the Population 

Now we look at a variable that has an approximately 
normal distribution in the population. Can we tell that this 
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distribution is approximately normal by looking at random 
samples? 

The following graphs show the heights (in centimeters) of 
5,000 women. Think of this as data from the population of a 
small town. From this population, we randomly selected 20 
women. We did this three times. Notice that for each 
random sample, the shape of the distribution of the heights 
in the sample is not skewed, and there are no outliers. By 
looking at the sample, we can get a pretty good sense that 
the variable is not skewed in the population, which suggests 
that the variable may be somewhat normally distributed in 
the population. 

In this example, the sample size is less than 30. We can 
only use the t-test if the variable is normally distributed in 
the population. The shape of the distribution in any one of 
these samples indicates that the variable does not have a 
skewed distribution in the population, suggesting that the 
distribution in the population is somewhat normal. Since 
the t-procedures are robust, we would conduct a t-test 
with any of these samples. 
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What’s the Main Point? 

We previously stated the conditions for use of the t-procedures as 
follows: 

(1) If the variable is normally distributed in the population, you can 
always use the t-procedures. 

(2) If the variable is not normally distributed in the population (or 
you can’t determine this factor), the sample size must be greater 
than 30 for safe use of the t-procedures. 

We are now loosening these conditions somewhat because the t-
procedures are robust. 

(3) If the sample is small (n ≤ 30), plot the data. If the distribution 
in the sample is not heavily skewed and does not have outliers, then 
we assume the variable is somewhat normally distributed in the 
population, so we use t-procedures. 

Comment 

If we use a t-procedure for a small sample (n ≤ 30), it is good 
practice to include a disclaimer with the conclusion. We might say 
something like, “On the basis of the sample, we are assuming that 
the variable is distributed without strong skew or extreme outliers 
in the population. The conclusion from this test is valid only if this 
assumption is true.” 

Learn By Doing 

Each histogram in the following questions represents a 
random sample. We do not know if the variable has a 
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normal distribution in the population, but we want to run a 
t-test to test a claim about the population mean. For each 
histogram, choose the option that best describes how to 
proceed with the hypothesis test. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=205 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=205 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=205 
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Comment 

Recall that the sample mean and standard deviation are not 
resistant to outliers. An outlier in the data can make the mean and 
standard deviation poor measures of center and spread. So why can 
we use data from large samples even if the data has an outlier? Well, 
if the sample is large enough, the distribution of sample means will 
still be approximately normal. And the t-model will be a good fit 
when we estimate the standard error of the sample means using 
the sample standard deviation. This is the important point. The 
P-value and confidence level come from a model of the sampling 
distribution, not from a model of the population’s distribution. 
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Summary in a Diagram 
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181. Hypothesis Test for a 
Population Mean (3 of 5) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test about a mean for a matched pairs 
design. State a conclusion in context. 

Another common use of the t-test for a population mean is in 
“before and after” situations. In this situation, we have two 
quantitative measurements from a single sample of individuals. This 
is an example of a matched-pairs design. 

Example 

Drinking and Driving 

The Centers for Disease Control and Prevention (CDC) 
website cites studies from the National Highway Traffic 
Safety Administration to support this statement: “Alcohol 
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use slows reaction time and impairs judgment and 
coordination, which are all skills needed to drive a car 
safely. The more alcohol consumed, the greater the 
impairment.” All states in the United States have adopted a 
blood alcohol concentration of 0.08% (80 mg/dL) as the 
legal limit for operating a motor vehicle. The CDC website 
continues, “Note: Legal limits do not define a level below 
which it is safe to operate a vehicle or engage in some other 
activity. Impairment due to alcohol use begins to occur at 
levels well below the legal limit.” 

It is this last statement that may be surprising to drivers. 
Interviews with drunk drivers who were involved in 
accidents reveal that drunk drivers do not realize how 
drunk they are. “I only had one or two drinks – I am okay to 
drive” is a common sentiment. Suppose a college conducts 
a study to call attention to this issue. Researchers use a 
random sample of 20 college students to examine the effect 
of drinking two beers on reaction times. They use a driving 
simulator to measure each student’s reaction time before 
and after drinking two beers. The reaction time is the time 
it takes the student to hit the brakes in the simulator when 
an obstacle appears in the road. 

Click here to see the data. 

In this situation, we have two quantitative measurements 
for each student. To measure the effect of the two beers, 
we subtract the two reaction times to create one 
measurement of “change” or “effect.” This controls the 
effects of individual characteristics that could influence 
reaction time, such as driving experience or natural 
quickness. 

Here is a partial list of the data. We define the difference 
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as “before minus after.” If the “after” reaction time is longer, 
then the difference is negative. A negative value means the 
reaction time is slower after drinking. 

 

Note: It is common to define the difference in 
measurements as “before minus after.” But we could also 
define the difference the other way around as “after minus 
before.” In this definition, if the “after” reaction time is 
longer, then the difference is positive, so a slower reaction 
time after drinking corresponds to a positive value. This 
makes less intuitive sense to us. We want “negative” to 
mean “drinking has a negative effect,” so we used the other 
definition, “before minus after.” 

Step 1: Determine the hypotheses. 

The null hypothesis is a claim of “no change” or “no 
effect.” The alternative hypothesis reflects the claim. 

H0: Drinking two beers has no effect on reaction 
time. 

Ha: Drinking two beers slows reaction time. 

If drinking two beers has no effect on reaction time, then 
the mean of the differences in reaction times (before minus 
after) will be zero. If drinking two beers slows reaction 
time, then the mean of the differences in reaction times 
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(before minus after) will be negative. So we can rewrite our 
hypotheses as follows. 

H0: μ = 0 
Ha: μ < 0 

where µ is the mean of the difference in reaction time 
(before minus after) for all students at this college after 
drinking two beers. 

Suppose researchers set a significance level of 5%. 

Note: if we defined the difference in reverse order as 
“after minus before,” then a positive difference corresponds 
to a slower reaction time. This changes the alternative 
hypothesis to Ha: µ > 0. This will not effect the P-value or 
our conclusion. You just have to make sure the alternative 
hypothesis says what you want it to say given the way you 
define the difference. 

Note: In some textbooks and other statistical materials, 
you will see the “mean of the difference” written as μd. 

Step 2: Collect the data. 

Here is the (made-up) data from this sample of 20 college 
students. The mean of the differences (before minus after) 
is approximately −0.46 seconds, and the standard deviation 
is approximately 0.87 seconds. 

Step 3: Assess the evidence. 

Check the Criteria for Use of a T-Model 

The sample size is only 20, and we do not know if these 
differences would be normally distributed in general when 
comparing these two treatments in the population of all 
college students. We therefore do not meet the conditions 
for use of a t-model. Some researchers would stop here and 
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not complete the hypothesis test. Others would check the 
shape of the distribution of differences in the sample. If the 
sample is approximately normal (or at least not heavily 
skewed), then they view this as a hopeful indication that the 
distribution in the population will also be approximately 
normal, and they continue with the hypothesis test, adding 
a disclaimer to the conclusion. 

Here is a histogram of the differences in the sample. 

 

The data is not heavily skewed, so we are willing to 
proceed with the t-test. 

Compute the Test Statistic 

Find the P-value. 

We use the simulation with the t-model for 19 degrees of 
freedom (df = n − 1 = 20 − 1 = 19). The P-value is 
approximately 0.015. 
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Step 4: State a conclusion. 

The P-value (0.015) is less than the significance level 
(0.05), so we reject the null and accept the alternative 
hypothesis that µ < 0. 

This study suggests that reactions times when driving are 
significantly slower after drinking two beers for students at 
this college. (P = 0.015). 

It is good practice to include a disclaimer with this 
conclusion because the sample is small. We might add the 
following to our conclusion if we were publicly presenting 
these results: “The sample was too small to formally met 
the requirements for a t-test. On the basis of the data, we 
are assuming that the difference in reaction times would be 
normally distributed in general when comparing these two 
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treatments in the population of all college students. The 
conclusion from this test is valid only if this assumption is 
true.” 

Comment 

From this study, can we generalize to a larger population of “all college 
students” or “all drivers”? Technically, such a generalization requires 
that the sample be randomly selected from the more general 
population. Is this type of random sampling done in practice? Not 
always. The matched pairs design controls for individual differences 
that would otherwise confound such a generalization. This is one 
of the reasons that researchers run hypothesis tests with data 
gathered by groups like the National Highway Traffic Safety 
Administration, even when participants are not randomly selected. 
But ideally we should select samples randomly from the population 
of interest. 

Can we make a cause-and-effect conclusion from this study? 
We should be cautious about a cause-and-effect conclusion here 

because there is no random assignment. We take measurements 
from every student in both the treatment and the control setting 
without randomizing the treatment order. Every participant did 
the driving test sober, then drank two beers and did the driving 
test again. Technically, we need a more sophisticated study design 
that uses random assignment in order to make cause-and-effect 
conclusions. For example, we could randomly assign the treatment 
order for each student by flipping a coin, assigning some students 
do the first driving test while sober and others do the first driving 
test after drinking two beers. Then everyone comes back on another 
day to complete the part of the experiment that he or she had not 
done. 
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The following activities give you an opportunity to practice parts 
of the hypothesis testing process. In each of these activities, the 
study is a matched-pairs design, so the population mean represents 
a mean of differences in paired measurements. Later you will have 
the opportunity to practice the hypothesis test from start to finish. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=206 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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182. Hypothesis Test for a 
Population Mean (4 of 5) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test about a population mean. State a 
conclusion in context. 

• Under appropriate conditions, conduct a 
hypothesis test about a mean for a matched pairs 
design. State a conclusion in context. 

This page contains four opportunities for practicing the hypothesis 
test for a population mean from start to finish. The last two 
activities guide you through this hypothesis test using data and your 
statistical software package. 
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How Much Are College Students Sleeping? 

 
(not including naps in class!) 
Scenario: Americans average 6.9 hours of sleep on weeknights, 

according to a report released in 2011 by the National Sleep 
Foundation. A student in a statistics class at Los Medanos College 
wondered if the average amount of sleep on weeknights is different 
for LMC students. She collected data from a survey of 43 randomly 
selected students at LMC. Respondents averaged 7.12 hours of sleep 
a night with a standard deviation of 1.45 hours. 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

Use this simulation when needed to answer questions above. 
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Texting and Concentration 

Scenario: An instructor at Los Medanos College conducted an 
experiment with her statistics class to study the effect of texting on 
concentration. She created two audio clips in which she read two 
different lists of words. The treatment required students to send a 
short text message to a friend while listening to one of the audio 
clips. In the control setting, students simply listened to one of the 
audio clips. Everyone wore earphones and listened to the audio clips 
in the same order. But a coin flip determined who was and was 
not texting each time. After each listening session, students had 2 
minutes to write down all the words they could remember. Twenty 
three students participated in the experiment. 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=207 

Use this simulation when needed to answer questions above. 
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183. Hypothesis Test for a 
Population Mean (5 of 5) 

 

Learning Objectives 

• Interpret the P-value as a conditional probability. 

We finish our discussion of the hypothesis test for a population 
mean with a review of the meaning of the P-value, along with a 
review of type I and type II errors. 

Review of the Meaning of the P-value 

At this point, we assume you know how to use a P-value to make a 
decision in a hypothesis test. The logic is always the same. If we pick 
a level of significance (α), then we compare the P-value to α. 

• If the P-value ≤ α, reject the null hypothesis. The data supports 
the alternative hypothesis. 

• If the P-value > α, do not reject the null hypothesis. The data is 
not strong enough to support the alternative hypothesis. 

In fact, we find that we treat these as “rules” and apply them without 
thinking about what the P-value means. So let’s pause here and 
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review the meaning of the P-value, since it is the connection 
between probability and decision-making in inference. 

Example 

Birth Weights in a Town 

Let’s return to the familiar context of birth weights for 
babies in a town. Suppose that babies in the town had a 
mean birth weight of 3,500 grams in 2010. This year, a 
random sample of 50 babies has a mean weight of about 
3,400 grams with a standard deviation of about 500 grams. 
Here is the distribution of birth weights in the sample. 

 

Obviously, this sample weighs less on average than the 
population of babies in the town in 2010. A decrease in the 
town’s mean birth weight could indicate a decline in overall 
health of the town. But does this sample give strong evidence 
that the town’s mean birth weight is less than 3,500 grams 
this year? 

We now know how to answer this question with a 
hypothesis test. Let’s use a significance level of 5%. 

Let μ = mean birth weight in the town this year. The null 
hypothesis says there is “no change from 2010.” 
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H0: μ < 3,500 
Ha: μ = 3,500 

Since the sample is large, we can conduct the T-test 
(without worrying about the shape of the distribution of 
birth weights for individual babies.) 

Statistical software tells us the P-value is 0.082 = 8.2%. 
Since the P-value is greater than 0.05, we fail to reject the 
null hypothesis. 

Our conclusion: This sample does not suggest that the 
mean birth weight this year is less than 3,500 grams 
(P-value = 0.082). The sample from this year has a mean of 
3,400 grams, which is 100 grams lower than the mean in 
2010. But this difference is not statistically significant. It 
can be explained by the chance fluctuation we expect to 
see in random sampling. 

What Does the P-Value of 0.082 Tell Us? 

A simulation can help us understand the P-value. In a simulation, 
we assume that the population mean is 3,500 grams. This is the null 
hypothesis. We assume the null hypothesis is true and select 1,000 
random samples from a population with a mean of 3,500 grams. The 
mean of the sampling distribution is at 3,500 (as predicted by the 
null hypothesis.) We see this in the simulated sampling distribution. 
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In the simulation, we can see that about 8.6% of the samples have 

a mean less than 3,400. Since probability is the relative frequency 
of an event in the long run, we say there is an 8.6% chance that 
a random sample of 500 babies has a mean less than 3,400 if the 
population mean is 3,500. We can see that the corresponding area 
to the left of T = −1.41 in the T-model (with df = 49) also gives us 
a good estimate of the probability. This area is the P-value, about 
8.2%. 

If we generalize this statement, we say the P-value is the 
probability that random samples have results more extreme than 
the data if the null hypothesis is true. (By more extreme, we mean 
further from value of the parameter, in the direction of the 
alternative hypothesis.) We can also describe the P-value in terms of 
T-scores. The P-value is the probability that the test statistic from a 
random sample has a value more extreme than that associated with 
the data if the null hypothesis is true. 
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Learn By Doing 

What Does a P-Value Mean? 

Do women who smoke run the risk of shorter pregnancy 
and premature birth? The mean pregnancy length is 266 
days. We test the following hypotheses. 

H0: μ = 266 
Ha: μ < 266 

Suppose a random sample of 40 women who smoke 
during their pregnancy have a mean pregnancy length of 
260 days with a standard deviation of 21 days. The P-value 
is 0.04. 

What probability does the P-value of 0.04 describe? Label 
each of the following interpretations as valid or invalid. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=208 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=208 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=208 

Review of Type I and Type II Errors 

We know that statistical inference is based on probability, so there 
is always some chance of making a wrong decision. Recall that there 
are two types of wrong decisions that can be made in hypothesis 
testing. When we reject a null hypothesis that is true, we commit a 
type I error. When we fail to reject a null hypothesis that is false, we 
commit a type II error. 

The following table summarizes the logic behind type I and type 
II errors. 
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It is possible to have some influence over the likelihoods of 

committing these errors. But decreasing the chance of a type I 
error increases the chance of a type II error. We have to decide 
which error is more serious for a given situation. Sometimes a type 
I error is more serious. Other times a type II error is more serious. 
Sometimes neither is serious. 

Recall that if the null hypothesis is true, the probability of 
committing a type I error is α. Why is this? Well, when we choose a 
level of significance (α), we are choosing a benchmark for rejecting 
the null hypothesis. If the null hypothesis is true, then the 
probability that we will reject a true null hypothesis is α. So the 
smaller α is, the smaller the probability of a type I error. 

It is more complicated to calculate the probability of a type II 
error. The best way to reduce the probability of a type II error is 
to increase the sample size. But once the sample size is set, larger 
values of α will decrease the probability of a type II error (while 
increasing the probability of a type I error). 

General Guidelines for Choosing a Level of Significance 

• If the consequences of a type I error are more serious, choose 
a small level of significance (α). 

• If the consequences of a type II error are more serious, choose 
a larger level of significance (α). But remember that the level of 
significance is the probability of committing a type I error. 

• In general, we pick the largest level of significance that we can 
tolerate as the chance of a type I error. 
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Learn By Doing 

Let’s return to the investigation of the impact of smoking 
on pregnancy length. 

Recap of the hypothesis test: The mean human 
pregnancy length is 266 days. We test the following 
hypotheses. 

H0: μ = 266 
Ha: μ < 266 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=208 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=208 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=208 

Let’s Summarize 

In this “Hypothesis Test for a Population Mean,” we looked at the 
four steps of a hypothesis test as they relate to a claim about a 
population mean. 

Step 1: Determine the hypotheses. 

• The hypotheses are claims about the population mean, µ. 
• The null hypothesis is a hypothesis that the mean equals a 

specific value, µ0. 
• The alternative hypothesis is the competing claim that µ is less 

than, greater than, or not equal to the  . 

◦ When  is  <  or  >  , the test is a one-tailed 
test. 

◦ When  is  ≠  , the test is a two-tailed test. 

Step 2: Collect the data. 
Since the hypothesis test is based on probability, random 

selection or assignment is essential in data production. Additionally, 
we need to check whether the t-model is a good fit for the sampling 
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distribution of sample means. To use the t-model, the variable must 
be normally distributed in the population or the sample size must 
be more than 30. In practice, it is often impossible to verify that 
the variable is normally distributed in the population. If this is the 
case and the sample size is not more than 30, researchers often use 
the t-model if the sample is not strongly skewed and does not have 
outliers. 

Step 3: Assess the evidence. 

• If a t-model is appropriate, determine the t-test statistic for 
the data’s sample mean. 

• Use the test statistic, together with the alternative hypothesis, 
to determine the P-value. 

• The P-value is the probability of finding a random sample with 
a mean at least as extreme as our sample mean, assuming that 
the null hypothesis is true. 

• As in all hypothesis tests, if the alternative hypothesis is 
greater than, the P-value is the area to the right of the test 
statistic. If the alternative hypothesis is less than, the P-value is 
the area to the left of the test statistic. If the alternative 
hypothesis is not equal to, the P-value is equal to double the 
tail area beyond the test statistic. 

Step 4: Give the conclusion. 
The logic of the hypothesis test is always the same. To state a 

conclusion about H0, we compare the P-value to the significance 
level, α. 

• If P ≤ α, we reject H0. We conclude there is significant evidence 
in favor of Ha. 

• If P > α, we fail to reject H0. We conclude the sample does not 
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provide significant evidence in favor of Ha. 

• We write the conclusion in the context of the research 
question. Our conclusion is usually a statement about the 
alternative hypothesis (we accept Ha or fail to acceptHa) and 
should include the P-value. 

Other Hypothesis Testing Notes 

• Remember that the P-value is the probability of seeing a 
sample mean at least as extreme as the one from the data if the 
null hypothesis is true. The probability is about the random 
sample; it is not a “chance” statement about the null or 
alternative hypothesis. 

• Hypothesis tests are based on probability, so there is always a 
chance that the data has led us to make an error. 

◦ If our test results in rejecting a null hypothesis that is 
actually true, then it is called a type I error. 

◦ If our test results in failing to reject a null hypothesis that 
is actually false, then it is called a type II error. 

◦ If rejecting a null hypothesis would be very expensive, 
controversial, or dangerous, then we really want to avoid a 
type I error. In this case, we would set a strict significance 
level (a small value of α, such as 0.01). 

• Finally, remember the phrase “garbage in, garbage out.” If the 
data collection methods are poor, then the results of a 
hypothesis test are meaningless. 
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184. Introduction: Inference 
for a Difference in Two 
Population Means 

What you’ll learn to do: Conduct a hypothesis 
test or construct a confidence interval to 
investigate a difference between two population 
means. Interpret results in context. 

LEARNING OBJECTIVES 

• Under appropriate conditions, conduct a 
hypothesis test about a difference between two 
population means. State a conclusion in context. 

• Construct a confidence interval to estimate a 
difference in two population means (when conditions 
are met). Interpret the confidence interval in context. 

1076  |  Introduction: Inference for a
Difference in Two Population Means



185. Inference for a Difference 
in Two Population Means 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test about a difference between two 
population means. State a conclusion in context. 

Introduction 

In this section, we learn to make inferences about a difference 
between two population means. Our work here parallels our work in 
inference about a difference between two population proportions. 
Recall the following slogan from the previous module, Inference for 
Two Proportions. 

It’s Not about the Values – It’s about How They Are Related! 
So just as in that module, the value of the population means 

is not the focus of inference. Instead, we want to develop tools 
for determining the relationship between two unknown population 
means. We select independent random samples from two different 
populations and find the difference in the sample means. We use 
the sample difference either to conduct a hypothesis test about the 
difference in population means or to estimate the difference using a 
confidence interval. 
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Example 

Beer and Reaction Time 

Suppose researchers study the effect of low levels of 
alcohol on drivers’ reaction time. Consider the following 
two study designs. 

Design 1: 

Researchers select a random sample of 19 drivers and 
assign them randomly to one of two treatments. The 9 
drivers in the treatment group each drink two beers. The 10 
drivers assigned to the control group do not drink beer. The 
response variable is reaction time (measured in seconds). 
The reaction time is the time it takes the driver to hit the 
brakes in a driving simulator when an obstacle appears in 
the road. The random assignment guarantees, at least in 
theory, that the two groups are independent. 

 

In this design, we calculate a mean and standard 
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deviation in response time for each group. We use the 
difference in the sample means to either test a hypothesis 
about, or calculate a confidence interval for, a difference in 
two population means or two treatments. 

Design 2: 

Researchers randomly select 8 drivers. The experiment is 
a matched-pairs design with two measurements taken for 
each driver. The researchers measure the reaction times in 
the driving simulator before and then after the consumption 
of two beers. 

 

In this design, we first calculate the differences in the 
two measurements for each driver. Then we calculate the 
mean and standard deviation of this one list of numbers. 
We use the single sample mean to either test a hypothesis 
about, or calculate a confidence interval for, a single 
population or a treatment effect. This is one of the types of 
inference we did in the previous section, “Hypothesis Test 
for a Population Mean.” 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=210 

Learn By Doing 

Identify the situations that involve inference about a 
difference between two population means by choosing 
“valid” or “invalid.” 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=210 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=210 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=210 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=210 
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186. Hypothesis Test for a 
Difference in Two Population 
Means (1 of 2) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test about a difference between two 
population means. State a conclusion in context. 

The Hypothesis Test for a Difference in Two 
Population Means 

The general steps of this hypothesis test are the same as always. As 
expected, the details of the conditions for use of the test and the 
test statistic are unique to this test (but similar in many ways to 
what we have seen before.) 

Step 1: Determine the hypotheses. 
The hypotheses for a difference in two population means are 

similar to those for a difference in two population proportions. 
The null hypothesis, H0, is again a statement of “no effect” or “no 
difference.” 
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H0: μ1 – μ2 = 0, which is the same as H0: μ1 = μ2 

The alternative hypothesis, Ha, can be any one of the following. 

Ha: μ1 – μ2 < 0, which is the same as Ha: μ1 < μ2 

Ha: μ1 – μ2 > 0, which is the same as Ha: μ1 > μ2 

Ha: μ1 – μ2 ≠ 0, which is the same as Ha: μ1 ≠ μ2 

Step 2: Collect the data. 
As usual, how we collect the data determines whether we can use 

it in the inference procedure. We have our usual two requirements 
for data collection. 

• Samples must be random to remove or minimize bias. 
• Samples must be representative of the populations in question. 

We use this hypothesis test when the data meets the following 
conditions. 

• The two random samples are independent. 
• The variable is normally distributed in both populations. If this 

variable is not known, samples of more than 30 will have a 
difference in sample means that can be modeled adequately by 
the t-distribution. As we discussed in “Hypothesis Test for a 
Population Mean,” t-procedures are robust even when the 
variable is not normally distributed in the population. If 
checking normality in the populations is impossible, then we 
look at the distribution in the samples. If a histogram or 
dotplot of the data does not show extreme skew or outliers, we 
take it as a sign that the variable is not heavily skewed in the 
populations, and we use the inference procedure. (Note: This is 
the same condition we used for the one-sample t-test in 
“Hypothesis Test for a Population Mean.”) 

Step 3: Assess the evidence. 
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If the conditions are met, then we calculate the t-test statistic. 
The t-test statistic has a familiar form. 

Since the null hypothesis assumes there is no difference in the 
population means, the expression (μ1 – μ2) is always zero. 

As we learned in “Estimating a Population Mean,” the t-
distribution depends on the degrees of freedom (df). In the one-
sample and matched-pair cases df = n – 1. For the two-sample t-test, 
determining the correct df is based on a complicated formula that 
we do not cover in this course. We will either give the df or use 
technology to find the df. With the t-test statistic and the degrees 
of freedom, we can use the appropriate t-model to find the P-value, 
just as we did in “Hypothesis Test for a Population Mean.” We can 
even use the same simulation. 

Step 4: State a conclusion. 
To state a conclusion, we follow what we have done with other 

hypothesis tests. We compare our P-value to a stated level of 
significance. 

• If the P-value ≤ α, we reject the null hypothesis in favor of the 
alternative hypothesis. 

• If the P-value > α, we fail to reject the null hypothesis. We do 
not have enough evidence to support the alternative 
hypothesis. 

As always, we state our conclusion in context, usually by referring 
to the alternative hypothesis. 
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Example 

“Context and Calories” 

Does the company you keep impact what you eat? This 
example comes from an article titled “Impact of Group 
Settings and Gender on Meals Purchased by College 
Students” (ALLEN-O’DONNELL, M., T. C. NOWAK, K. A. SNYDER, 
AND M. D. COTTINGHAM, JOURNAL OF APPLIED SOCIAL 

PSYCHOLOGY 49(9), 2011, ONLINELIBRARY.WILEY.COM/DOI/
10.1111/J.1559-1816.2011.00804.X/FULL). In this study, 
researchers examined this issue in the context of gender-
related theories in their field. For our purposes, we look at 
this research more narrowly. 

Step 1: Stating the hypotheses. 

In the article, the authors make the following hypothesis. 
“The attempt to appear feminine will be empirically 
demonstrated by the purchase of fewer calories by women 
in mixed-gender groups than by women in same-gender 
groups.” We translate this into a simpler and narrower 
research question: Do women purchase fewer calories when 
they eat with men compared to when they eat with women? 

Here the two populations are “women eating with 
women” (population 1) and “women eating with men” 
(population 2). The variable is the calories in the meal. We 
test the following hypotheses at the 5% level of 
significance. 
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The null hypothesis is always H0: μ1 – μ2 = 0, which is the 
same as H0: μ1 = μ2. 

The alternative hypothesis Ha: μ1 – μ2 > 0, which is the 
same as Ha: μ1 > μ2. 

Here μ1 represents the mean number of calories ordered 
by women when they were eating with other women, and 
μ2 represents the mean number of calories ordered by 
women when they were eating with men. 

Note: It does not matter which population we label as 1 or 
2, but once we decide, we have to stay consistent 
throughout the hypothesis test. Since we expect the 
number of calories to be greater for the women eating with 
other women, the difference is positive if “women eating 
with women” is population 1. If you prefer to work with 
positive numbers, choose the group with the larger 
expected mean as population 1. This is a good general tip. 

Step 2: Collect Data. 

As usual, there are two major things to keep in mind 
when considering the collection of data. 

• Samples need to be representative of the 
population in question. 

• Samples need to be random in order to remove or 
minimize bias. 

Representative Samples? 

The researchers state their hypothesis in terms of 
“women.” We did the same. But the researchers gathered 
data by watching people eat at the HUB Rock Café II on the 
campus of Indiana University of Pennsylvania during the 
Spring semester of 2006. Almost all of the women in the 
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data set were white undergraduates between the ages of 18 
and 24, so there are some definite limitations on the scope 
of this study. These limitations will affect our conclusion 
(and the specific definition of the population means in our 
hypotheses.) 

Random Samples? 

The observations were collected on February 13, 2006, 
through February 22, 2006, between 11 a.m. and 7 p.m. We 
can see that the researchers included both lunch and 
dinner. They also made observations on all days of the week 
to ensure that weekly customer patterns did not confound 
their findings. The authors state that “since the time period 
for observations and the place where [they] observed 
students were limited, the sample was a convenience 
sample.” Despite these limitations, the researchers 
conducted inference procedures with the data, and the 
results were published in a reputable journal. We will also 
conduct inference with this data, but we also include a 
discussion of the limitations of the study with our 
conclusion. The authors did this, also. 

Do the data met the conditions for use of a t-test? 

The researchers reported the following sample statistics. 

• In a sample of 45 women dining with other women, 
the average number of calories ordered was 850, and 
the standard deviation was 252. 

• In a sample of 27 women dining with men, the 
average number of calories ordered was 719, and the 
standard deviation was 322. 

One of the samples has fewer than 30 women. We need 
to make sure the distribution of calories in this sample is 
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not heavily skewed and has no outliers, but we do not have 
access to a spreadsheet of the actual data. Since the 
researchers conducted a t-test with this data, we will 
assume that the conditions are met. This includes the 
assumption that the samples are independent. 

Step 3: Assess the evidence. 

As noted previously, the researchers reported the 
following sample statistics. 

• In a sample of 45 women dining with other women, 
the average number of calories ordered was 850, and 
the standard deviation was 252. 

• In a sample of 27 women dining with men, the 
average number of calories ordered was 719, and the 
standard deviation was 322. 

To compute the t-test statistic, make sure sample 1 
corresponds to population 1. Here our population 1 is 
“women eating with other women.” So x1 = 850, s1 = 252, n1 

=45, and so on. 

Using technology, we determined that the degrees of 
freedom are about 45 for this data. To find the P-value, we 
use our familiar simulation of the t-distribution. Since the 
alternative hypothesis is a “greater than” statement, we look 
for the area to the right of T = 1.81. The P-value is 0.0385. 
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Step 4: State a conclusion. 

Generic Conclusion 

The hypotheses for this test are H0: μ1 – μ2 = 0 and Ha: μ1 

– μ2 > 0. Since the P-value is less than the significance level 
(0.0385 < 0.05), we reject H0 and accept Ha. 

Conclusion in context 

At Indiana University of Pennsylvania, the mean number 
of calories ordered by undergraduate women eating with 
other women is greater than the mean number of calories 
ordered by undergraduate women eating with men (P-value 
= 0.0385). 
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A Comment about Conclusions 

In the conclusion above, we did not generalize the findings to all 
women. Since the samples included only undergraduate women at 
one university, we included this information in our conclusion. But 
our conclusion is a cautious statement of the findings. The authors 
see the results more broadly in the context of theories in the field of 
social psychology. In the context of these theories, they write, “Our 
findings support the assertion that meal size is a tool for influencing 
the impressions of others. For traditional-age, predominantly White 
college women, diminished meal size appears to be an attempt to 
assert femininity in groups that include men.” This viewpoint is 
echoed in the following summary of the study for the general public 
on National Public Radio (npr.org). 

Both men and women appear to choose larger portions when 
they eat with women, and both men and women choose smaller 
portions when they eat in the company of men, according to new 
research published in the Journal of Applied Social Psychology. 
The study, conducted among a sample of 127 college students, 
suggests that both men and women are influenced by 
unconscious scripts about how to behave in each other’s 
company. And these scripts change the way men and women eat 
when they eat together and when they eat apart. 

Should we be concerned that the findings of this study are 
generalized in this way? Perhaps. But the authors of the article 
address this concern by including the following disclaimer with 
their findings: “While the results of our research are suggestive, 
they should be replicated with larger, representative samples. 
Studies should be done not only with primarily White, middle-class 
college students, but also with students who differ in terms of race/
ethnicity, social class, age, sexual orientation, and so forth.” This 
is an example of good statistical practice. It is often very difficult 

1090  |  Hypothesis Test for a Difference in Two Population Means (1 of 2)



to select truly random samples from the populations of interest. 
Researchers therefore discuss the limitations of their sampling 
design when they discuss their conclusions. 

In the following activities, you will have the opportunity to 
practice parts of the hypothesis test for a difference in two 
population means. On the next page, the activities focus on the 
entire process and also incorporate technology. 

Learn By Doing 

National Health and Nutrition Survey 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=211 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=211 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=211 
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187. Hypothesis Test for a 
Difference in Two Population 
Means (2 of 2) 

 

Learning Objectives 

• Under appropriate conditions, conduct a 
hypothesis test about a difference between two 
population means. State a conclusion in context. 

On this page, we practice the hypothesis test for a difference in two 
population means (also called the two-sample t-test). 

Example 

Using Technology to Run the Hypothesis 
Test 

When dating someone, what matters more to you: looks or 
personality? This question was the focus of a community 
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college student’s class project for an introductory statistics 
course. She devised a 25-point scale. An answer of 1 means 
“personality matters most and looks don’t matter at all.” A 
score of 25 means “looks matter most and personality does 
not matter at all.” Her hypothesis is that the mean scores 
for males and females will differ, but she does not have an 
opinion about which population will have a higher mean 
score. 

Here are her hypotheses. 

H0: μ1 – μ2 = 0 
Ha: μ1 – μ2 ≠ 0 

We can also write the hypotheses as follows. 

H0: μ1 = μ2 

Ha: μ1 ≠ μ2 

She chose a random sample of 10 classes from the 
schedule at Los Medanos College and distributed surveys in 
those classes. Survey respondents totaled 239 students: 150 
females and 85 males. 

We used her data to run a hypothesis test for a difference 
in two population means. 

Here is the relevant output for our example: 
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According to R, the P-value of this test is so small that it is 
essentially 0. How do we interpret this? 

A P-value that is practically 0 means that it would be 
almost impossible to get data like that observed (or even 
more extreme) had the null hypothesis been true. 

More specifically to our example, if there were no 
differences between females and males with respect to 
value they place on looks versus personality, it would be 
almost impossible (probability approximately 0) to get data 
where the difference between the sample means of females 
and males is -2.6 (that difference is 10.73 – 13.33 = -2.6) or 
higher. 

Learn By Doing 

Identify the P-value 

Remember to use the printout of the results in the above 
example to answer the questions below. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=212 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=212 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=212 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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188. Estimating the Difference 
in Two Population Means 

 

Learning Objectives 

• Construct a confidence interval to estimate a 
difference in two population means (when conditions 
are met). Interpret the confidence interval in context. 

Confidence Interval to Estimate μ1 − μ2 

In a hypothesis test, when the sample evidence leads us to reject 
the null hypothesis, we conclude that the population means differ 
or that one is larger than the other. An obvious next question is 
how much larger? In practice, when the sample mean difference 
is statistically significant, our next step is often to calculate a 
confidence interval to estimate the size of the population mean 
difference. 

The confidence interval gives us a range of reasonable values for 
the difference in population means μ1 − μ2. We call this the two-
sample T-interval or the confidence interval to estimate a difference 
in two population means. The form of the confidence interval is 
similar to others we have seen. 
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Sample Statistic 
Since we’re estimating the difference between two population 

means, the sample statistic is the difference between the means of 
the two independent samples: . 

Critical T-Value 
The critical T-value comes from the T-model, just as it did in 

“Estimating a Population Mean.” Again, this value depends on the 
degrees of freedom (df). For two-sample T-test or two-sample T-
intervals, the df value is based on a complicated formula that we do 
not cover in this course. We either give the df or use technology to 
find the df. 

Standard Error 
The estimated standard error for the two-sample T-interval is the 

same formula we used for the two-sample T-test. (As usual, s1 and 
s2 denote the sample standard deviations, and n1 and n2 denote the 
sample sizes.) 

Putting all this together gives us the following formula for the 
two-sample T-interval. 

Conditions for Use 
The conditions for using this two-sample T-interval are the same 

as the conditions for using the two-sample T-test. 

• The two random samples are independent and representative. 
• The variable is normally distributed in both populations. If it is 

not known, samples of more than 30 will have a difference in 
sample means that can be modeled adequately by the T-
distribution. As we discussed in “Hypothesis Test for a 
Population Mean,” T-procedures are robust even when the 
variable is not normally distributed in the population. If 
checking normality in the populations is impossible, then we 
look at the distribution in the samples. If a histogram or 
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dotplot of the data does not show extreme skew or outliers, we 
take it as a sign that the variable is not heavily skewed in the 
populations, and we use the inference procedure. 

Example 

Confidence Interval for the “Calories and 
Context” Study 

In the preceding few pages, we worked through a two-
sample T-test for the “calories and context” example. In this 
example, we use the sample data to find a two-sample T-
interval for μ1 − μ2 at the 95% confidence level. 

Recap of the Situation 

• Population 1: Let μ1 be the mean number of calories 
purchased by women eating with other women. 

• Population 2: Let μ2 be the mean number of 
calories purchased by women eating with men. 

Sample Statistics 

Size (n) SD (s) 

Sample 1 45 850 252 

Sample 2 27 719 322 

Standard Error 

We found that the standard error of the sampling 
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distribution of all sample differences is approximately 72.47. 

Critical T-value 

For these two independent samples, df = 45. We find the 
critical T-value using the same simulation we used in 
“Estimating a Population Mean.” 

 

Reading from the simulation, we see that the critical T-
value is 1.6790. 

Confidence Interval 

We can now put all this together to compute the 
confidence interval: 

Expressing this as an interval gives us: 
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Interpretation 

We are 95% confident that the true value of μ1 − μ2 is 
between 9 and 253 calories. We can be more specific about 
the populations. We are 95% confident that at Indiana 
University of Pennsylvania, undergraduate women eating 
with women order between 9.32 and 252.68 more calories 
than undergraduate women eating with men. 

 
In this next activity, we focus on interpreting confidence intervals 

and evaluating a statistics project conducted by students in an 
introductory statistics course. 

Learn By Doing 

Improving Children’s Math Skills 

Students in an introductory statistics course at Los 
Medanos College designed an experiment to study the 
impact of subliminal messages on improving children’s 
math skills. The students were inspired by a similar study at 
City University of New York, as described in David Moore’s 
textbook The Basic Practice of Statistics (4TH ED., W. H. 
FREEMAN, 2007). The participants were 11 children who 
attended an afterschool tutoring program at a local church. 
The children ranged in age from 8 to 11. All received 
tutoring in arithmetic skills. At the beginning of each 
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tutoring session, the children watched a short video with a 
religious message that ended with a promotional message 
for the church. 

The statistics students added a slide that said, “I work 
hard and I am good at math.” This slide flashed quickly 
during the promotional message, so quickly that no one 
was aware of the slide. Children who attended the tutoring 
sessions on Mondays watched the video with the extra 
slide. Children who attended the tutoring sessions on 
Wednesday watched the video without the extra slide. The 
experiment lasted 4 weeks. The children took a pretest and 
posttest in arithmetic. Here are some of the results: 

https://assessments.lumenlearning.com/assessments/3714 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=213 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=213 

 
 

Let’s Summarize 

Hypothesis tests and confidence intervals for two means can 
answer research questions about two populations or two 
treatments that involve quantitative data. In “Inference for a 
Difference between Population Means,” we focused on studies that 
produced two independent samples. Previously, in “Hpyothesis Test 
for a Population Mean,” we looked at matched-pairs studies in which 
individual data points in one sample are naturally paired with the 
individual data points in the other sample. 

The hypotheses for two population means are similar to those for 
two population proportions. 

The null hypothesis, H0, is a statement of “no effect” or “no 
difference.” 

H0: μ1 – μ2 = 0, which is the same as H0: μ1 = μ2 
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The alternative hypothesis, Ha, takes one of the following three 
forms: 

Ha: μ1 – μ2 < 0, which is the same as Ha: μ1 < μ2 

Ha: μ1 – μ2 > 0, which is the same as Ha: μ1 > μ2 

Ha: μ1 – μ2 ≠ 0, which is the same as Ha: μ1 ≠ μ2 

As usual, how we collect the data determines whether we can use it 
in the inference procedure. We have our usual two requirements for 
data collection. 

• Samples must be random in order to remove or minimize bias. 
• Sample must be representative of the population in question. 

We use the two-sample hypothesis test and confidence interval 
when the following conditions are met: 

• The two random samples are independent. 
• The variable is normally distributed in both populations. If this 

variable is not known, samples of more than 30 will have a 
difference in sample means that can be modeled adequately by 
the t-distribution. As we discussed in “Hypothesis Test for a 
Population Mean,” t-procedures are robust even when the 
variable is not normally distributed in the population. 
Therefore, if checking normality in the populations is 
impossible, then we look at the distribution in the samples. If a 
histogram or dotplot of the data does not show extreme skew 
or outliers, we take it as a sign that the variable is not heavily 
skewed in the populations, and we use the inference 
procedure. 

Formulas: 
The confidence interval for μ1 − μ2 is 

Hypothesis test for H0: μ1 – μ2 = 0 is 
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We use technology to find the degrees of freedom to determine 
P-values and critical t-values for confidence intervals. (In most 
problems in this section, we provided the degrees of freedom for 
you.) 
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189. Putting It Together: 
Inference for Means 

 

Let’s Summarize 

The focus of this module, Inference for Means, is inference for a 
population mean or a difference between two populations means. 
We began this module with a discussion of the sampling distribution 
of sample means. We then developed a probability model based on 
this sampling distribution. We used the probability model with an 
actual sample mean to test a claim about population mean in a 
hypothesis test or to estimate a population mean with a confidence 
interval. We then moved to inference for a difference in two 
population means (or a treatment effect.) 

Sampling Distribution of Means 

If we have a quantitative data set from a population with mean µ 
and standard deviation σ, the model for the theoretical sampling 
distribution of means of all random samples of size n has the 
following properties: 

• The mean of the sampling distribution of means is µ. 
• The standard deviation of the sampling distribution of means is 

. 

◦ Notice that as n grows, the standard error of the sampling 
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distribution of means shrinks. That means that larger 
samples give more accurate estimates of a population 
mean. 

• For large enough sample size, the sampling distribution of 
means is approximately normal (even if population is not 
normal). This is called the central limit theorem. 

◦ If a variable has a skewed distribution for individuals in the 
population, a larger sample size is needed to ensure that 
the sampling distribution has a normal shape. 

◦ The general rule is that if n is at least 30, then the 
sampling distribution of means will be approximately 
normal. However, if the population is already normal, then 
any sample size will produce a normal sampling 
distribution. 

• We practiced finding a probability associated with a range of 
sample means, which is similar to finding a P-value in 
hypothesis testing. The process is as follows. 

◦ Convert a sample mean X into a z-score: 

◦ Use technology to find a probability associated with a 
given range of z-scores. 

Confidence Intervals 

The Form 
A confidence interval approximates a population mean by giving 

us a range of values that likely contains the population mean μ. The 
general form of the confidence interval is 

We covered three different types of confidence intervals: 
One-sample Z-interval: , where σ is 

the population standard deviation (when it is known). 
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One-sample T-interval: , where s is 
the sample standard deviation. 

Two-sample T-interval: , where we 
use the sample statistics from two independent samples. 

The T-Model 
When the standard deviation of the population is unknown, which 

is often the case, we use the T-model to find the critical values. 
When using the T-model to find critical values, we need to select an 
appropriate number of degrees of freedom. 

• In the one-sample case, the number of degrees of freedom is 1 
less than the sample size (df = n – 1). 

• In the two-independent-sample case, the degrees of freedom 
come from a complicated formula, and we often use 
technology to find df. 

Conclusions 
To say we are 95% confident that the population mean falls within 

our confidence interval really means that about 95% of all 
confidence intervals computed in this way will capture the true 
population mean. 

Conditions 
The population must be normally distributed, or the sample size 

must be large enough (larger than 30). In the case of the two-sample 
T-interval, both populations/samples must meet these conditions. 
In practice, we use T-procedures with smaller samples if the 
distribution of the variable in the sample(s) is not heavily skewed 
and is without outliers. We take this as an indication that the 
variable has a fairly normal distribution in the population(s). 

Observations about Confidence Interval Structure 

• As we saw with other confidence intervals, the width of a 
confidence interval is twice the margin of error. The smaller 
the margin of error, the narrower the confidence interval and 
the more precise the estimate of the population parameter. 
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• Increasing the confidence level decreases the precision (larger 
margin of error, so wider interval). Decreasing the confidence 
level increases the precision (smaller margin of error, so 
narrower interval). 

• Confidence intervals are useful estimates only when they 
provide a good balance of confidence level and precision. In 
order to increase precision without losing confidence, we must 
increase the sample size. In other words, larger samples 
provide more precise estimates without sacrificing confidence. 

Hypothesis Testing (Tests for Statistical 
Significance) 

The process of any hypothesis test consists of four basic steps: 

• Define the hypotheses 
• Collect the data: We need random samples that are 

representative of the population. For the two-sample T-test, 
the samples must be independent. 

• Assess the evidence: Assessment includes checking 
appropriate conditions, computing test statistics, and finding 
corresponding P-values. 

• State the conclusion: We compare the P-value to α, decide 
whether or not to reject H0, then state conclusion in context. 

Hypotheses 

• The null hypothesis (H0): The null hypothesis gives the value 
of the parameter we use to create the sampling distribution. In 
this way, the null hypothesis states what we assume to be true 
about the population. 

• The alternative hypothesis (Ha): The alternative hypothesis 
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usually reflects the claim in the research question about the 
value of the parameter. The alternative hypothesis says the 
parameter is greater than or less than or not equal to the value 
we assume to be true in the null hypothesis. 

◦ When Ha is μ < μ0 or μ > μ0, the test is called a one-tailed 
test. 

▪ For the paired T-test, H0 would look like μ < 0 or μ > 0 
in the case of a one-tailed test. 

▪ For the two-sample T-test, H0 would look like μ1 − μ2 < 
0 or μ1 − μ2 > 0 in the case of a one-tailed test. 

◦ When Ha is μ ≠ μ0, the test is called a two-tailed test. 

▪ For the paired T-test, Ha would look like μ ≠ 0 in the 
case of a two-tailed test. 

▪ For the two-sample T-test, Ha would look like μ1 − μ2 ≠ 
0 in the case of a two-tailed test. 

Conditions 
Conditions that must be satisfied in order to carryout T-

procedures are as follows: 

• The population is normally distributed, or the sample is large 
(at least 30). This applies to both populations for the two-
sample T-test. 

• The samples must be random in order to avoid bias. 
• The samples must be independent in the case of the two-

sample T-test. 

Test Statistic 
The test T-statistic is given by 

We’ve learned about three different types of T-tests: 
One-sample T-test: 
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Paired T-test: We calculate the differences, then find the mean 
and standard deviation. 

Two-sample T-test: 

P-values 
The P-value is the probability of finding a random sample with 

a test statistic at least as extreme as ours, assuming that the null 
hypothesis is true. We find P-values by using the T-distribution. 

To come to a conclusion about H0, we compare the P-value to the 
significance level, α. 

• If P ≤ α, we reject H0 and conclude there is significant evidence 
in favor of Ha. 

• If P > α, we fail to reject H0 and conclude the sample does not 
provide significant evidence in favor of Ha. 

Error Types 
Hypothesis tests are based on random samples, so the 

conclusions are really statements about probabilities, and it is 
possible for the conclusions to be wrong. 

• If our test results in rejecting a null hypothesis that is actually 
true, it is called a type I error. 

• If our test results in failing to reject a null hypothesis that is 
actually false, it is called a type II error. 

You are now ready to practice what you learned in this module by 
doing a StatTutor exercise. We design StatTutor exercises to help 
you apply what you have learned to a real-life data analysis question. 

Instructions: One of the first few screens in StatTutor contains 
a link to download the data set for this StatTutor exercise. When 
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you click that link, a pop-up window will appear asking if you want 
to open or save the file. Make sure you click “Save,” which allows 
you to save the file to your hard drive. Then find the downloaded 
file and double-click it to open it if you’re using R, Minitab, Excel, 
or StatCrunch, or transfer it to your calculator if you’re using the TI 
Calculator. 

If you are using StatCrunch, please see Additional Instructions for 
StatCrunch. 

 

Are You Ready for the Checkpoint? 

If you completed all of the exercises in this module, you should 
be ready for the Checkpoint. To make sure that you are ready for 
the Checkpoint, use the My Response link below to evaluate your 
understanding of the learning objectives for this module and to 
submit questions that you may have. 
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190. StatTutor: Analyzing 
Data From a Course's Grade 
Book 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=215 
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191. Assignment: Distribution 
of Sample Means 

 

Question 1: 

Scores on the math portion of the SAT (SAT-M) in a recent year 
have followed a normal distribution with mean μ = 507 and standard 
deviation σ = 111. 

What is the probability that the mean SAT-M score of a random 
sample of 4 students who took the test that year is more than 600? 
Explain why you can solve this problem, even though the sample 
size (n = 4) is very low. 

Question 2: 

Bags of a certain brand of potato chips say that the net weight of the 
contents is 35.6 grams. Assume that the standard deviation of the 
individual bag weights is 5.2 grams. 

A quality control engineer selects a random sample of 35 bags. 
The mean weight of these 35 bags turns out to be 33.6 grams. 

If the mean and standard deviation of individual bags is reported 
correctly, what is the probability that a random sample of 35 bags 
has a mean weight of 33.6 grams or less. 
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Question 3: 

Does the sample provide strong evidence that the mean weight of 
the bags is lower than the 35.6 grams listed on the package? 
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192. Assignment: Connection 
between Confidence Intervals 
and Sampling Distributions 

 
The purpose of this activity is to help give you a better 

understanding of the underlying reasoning behind the 
interpretation of confidence intervals. In particular, you will gain a 
deeper understanding of why we say that we are “95% confident 
that the population mean is covered by the interval.” 

 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=217 

When the simulation loads you will see a normal-shaped 
distribution, which represents the sampling distribution of the 
mean (x-bar) for random samples of a particular fixed sample size, 
from a population with a fixed standard deviation of σ. 

The green line marks the value of the population mean, μ. 
To begin the simulation, click the very top “sample” button at the 

topmost right of the simulation. You will see a line segment appear 
underneath the distribution; you should see that the line segment 
has a tiny red dot in the middle. 

You have used the simulation to select a single sample from the 
population; the simulation has automatically computed the mean (x-
bar) of your sample; your x-bar value is represented by the little red 
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dot in the middle of the line segment. The line segment represents 
a confidence interval. Notice that, by default, the simulation used a 
95% confidence level. 

Question 1: 

Did your 95% confidence interval contain (or “cover”) the population 
mean μ (the green line)? 

If your confidence interval did cover the population mean μ, then 
the simulation will have recorded 1 “hit” on the right side of the 
simulation. 

Now, click to select another single sample. 

Question 2: 

Was your second sample mean x-bar (the new red dot) the same 
value as your 1st sample mean? (i.e., is it in the same relative location 
along the axis?) Why is this result to be expected? 

Question 3: 

A new 95% confidence interval has also been constructed (the new 
line segment, centered at the location of your second x-bar). Does 
the new interval cover the population mean μ? 

Notice, under “total” on the right side of the simulation, the 
number of total selected samples has been tallied. 

Now click “sample 50” repeatedly until the simulation tallies a 
“total” of around 1,000 samples. You will see that the simulation 
computes the “percent hit” for all the intervals. 
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Question 4: 

What percentage of the many 95% confidence intervals should 
cover the population mean μ? 

Question 5: 

Now let’s summarize some key ideas. 
Based on what you’ve seen on the simulation (with the level set at 

95%), decide which of the following statements are true and which 
are false. 

1. Each interval is centered at the population mean (μ). 
2. Each interval is centered at the sample mean (x-bar). 
3. The population mean (μ) changes when different samples are 
selected. 
4. The sample mean (x-bar) changes when different samples are 
selected. 
5. In the long run, 95% of the intervals will contain (or “cover”) the 
sample mean (x-bar). 
6. In the long run, 95% of the intervals will contain (or “cover”) the 
population mean (μ). 
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193. Assignment: Hypothesis 
Testing for the Population 
Mean 

 
The purpose of this activity is to give you guided practice in going 

through the process of a t-test for the population mean, and teach 
you how to carry out this test using statistical software. 

Background: 
A group of 75 college students from a certain liberal arts college 

were randomly sampled and asked about the number of alcoholic 
drinks they have in a typical week. The file containing the data 
is linked below. The purpose of this study was to compare the 
drinking habits of the students at the college to the drinking habits 
of college students in general. In particular, the dean of students, 
who initiated this study, would like to check whether the mean 
number of alcoholic drinks that students at his college have in a 
typical week differs from the mean of U.S. college students in 
general, which is estimated to be 4.73. 

Question 1: 

Let μ be the mean number of alcoholic beverages that students in 
the college drink in a typical week. State the hypotheses that are 
being tested in this problem. 
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Question 2: 

Here is a histogram of the data. Can we safely use the t-test with 
this data? 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 3: 

State the test statistic, interpret its value and show how it was 
found. 
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Question 4: 

Based on the P-value, draw your conclusions in context. 

Question 5: 

What would your conclusions be if the dean of students suspected 
that the mean number of alcoholic drinks that students in the 
college consume in a typical week is lower than the mean of U.S. 
college students in general? In other words, if this were a test of the 
hypotheses: 

H0: μ = 4.73 drinks per week 
Ha: μ < 4.73 drinks per week 

Question 6: 

Now suppose that instead of the 75 students having been randomly 
selected from the entire student body, the 75 students had been 
randomly selected only from the engineering classes at the college 
(for the sake of convenience). 

Address the following two issues regarding the effect of such a 
change in the study design: 

a. Would we still be mathematically justified in using the T-test for 
obtaining conclusions, as we did previously? 

b. Would the resulting conclusions still address the question of 
interest (which, remember, was to investigate the drinking habits of 
the students at the college as whole)? 

1122  |  Assignment: Hypothesis Testing for the Population Mean



194. Assignment: Matched 
Pairs 

 
The purpose of this activity is to give you guided practice in 

carrying out the paired t-test and to teach you how to obtain the 
paired t-test output using statistical software. Here is some 
background for the historically important data that we are going to 
work with in this activity. 

Background: Gosset’s Seed Plot Data 
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William S. Gosset was employed by the Guinness brewing company 
of Dublin. Sample sizes available for experimentation in brewing 
were necessarily small, and new techniques for handling the 
resulting data were needed. Gosset consulted Karl Pearson 
(1857-1936) of University College in London, who told him that the 
current state of knowledge was unsatisfactory. Gosset undertook 
a course of study under Pearson, and the outcome of his study 
was perhaps the most famous paper in statistical literature, “The 
Probable Error of a Mean” (1908), which introduced the t 
distribution. 

Since Gosset was contractually bound by Guinness, he published 
under a pseudonym, “Student”; hence, the t distribution is often 
referred to as Student’s t distribution. 

As an example to illustrate his analysis, Gosset reported in his 
paper on the results of seeding 11 different plots of land with two 
different types of seed: regular and kiln-dried. There is reason to 
believe that drying seeds before planting will increase plant yield. 
Since different plots of soil may be naturally more fertile, this 
confounding variable was eliminated by using the matched pairs 
design and planting both types of seed in all 11 plots. 

The resulting data (corn yield in pounds per acre) are as follows: 
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We use these data to test the hypothesis that kiln-dried seed yields 
more corn than regular seed. 

Because of the nature of the experimental design (matched pairs), 
we are testing the difference in yield. 

 

Note that the differences were calculated: regular – kiln-dried. 

Question 1: 

State the appropriate hypotheses that are being tested here. Be sure 
to define the parameter that you are using. 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 
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Question 2: 

Are the conditions that allow me to safely use the paired T-test 
satisfied? Support your answer by using appropriate visual displays. 

Question 3: 

Based on the visual display that you produced for answering the 
previous question, does it seem like there is some evidence in the 
data in favor of the alternative hypothesis? Explain. 

Question 4: 

Carry out the paired t-test, state the test statistic and P-value, and 
state your conclusion in context. 
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195. Assignment: Checking 
Conditions 

 
The purpose of this activity is to give you guided practice in 

checking whether the conditions that allow us to use the two-
sample t-test are met. (Recall that the two-sample t-test is another 
name for the hypothesis test for a difference in two population 
means.) 

Background 

A researcher wanted to study whether or not men and women differ 
in the amount of time they watch TV during a week. In each of the 
following cases, you’ll have to decide whether we can use the two-
sample t-test to test this claim or not. 

Case 1 

A random sample of 40 adults was chosen (22 of whom were women 
and 18 of whom were men). At the end of the week, each of the 40 
subjects reported the total amount of time (in minutes) that he/she 
watched TV during that week. 

Instructions 

Click on the link corresponding to your statistical package to see 
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instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 1: 

Can we use the two-sample T-test to test this claim? 

Case 2 

A random sample of 400 adults was chosen (191 women and 209 
men). At the end of the week, each of the 400 subjects reported the 
total amount of time (in minutes) that he or she watched TV during 
that week. 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 2: 

Can we use the two-sample T-test to test this claim? 
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Case 3 

A random sample of 25 women and another random sample of 25 
men was chosen. At the end of the week, each of the 50 subjects 
reported the total amount of time (in minutes) that he or she 
watched TV during that week. 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 3: 

Can we use the two-sample T-test to test this claim? 

Case 4 

A random sample of 50 married couples was chosen, which was split 
into a sample of 50 men and a sample of 50 women. At the end of 
the week, each of the 100 subjects reported the total amount of time 
(in minutes) that he or she watched TV during that week. 
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Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 4: 

Can we use the two-sample T-test to test this claim? 
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196. Assignment: Two 
Independent Samples 

 
The purpose of this activity is to give you guided practice in 

obtaining and interpreting a 95% confidence interval for μ1 − μ2 

following a two-sample T-test that rejected H0. Recall our second 
example: 

 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 
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R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question: 

Obtain the 95% confidence interval for μ1 – μ2 and interpret it in 
context. 
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PART XI 

CHAPTER 11: CHI-SQUARE 
TESTS 
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197. Why It Matters: 
Chi-Square Tests 

 
In this module, Chi-Square Tests, we again focus on inference 

with categorical variables. We learn three new hypothesis tests, two 
of which are an extension of hypothesis tests about proportions 
that we learned in the modules Inference for One Proportion and 
Inference for Two Proportions. This module does not focus on 
estimating a parameter, so there is nothing about confidence 
intervals in this module. 

Here is the Big Picture of Statistics with the new material for Chi-
Square Tests highlighted in purple. 

 
Following are examples of research questions that procedures in 

this module can address: 
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Goodness-of-Fit Test: Test a claim about the distribution of a 
categorical variable in a population. 

• During the presidential election of 2008, the Pew Research 
Center collected survey data that suggested that 24% of 
registered voters were liberal, 38% were moderate, and 38% 
were conservative. Is the distribution of political views 
different this year? 

• The distribution of blood types for whites in the United States 
is 45% type O, 41% type A, 10% type B, and 4% type AB. Is the 
distribution of blood types different for Asian Americans? 

Test of Independence: Test a claim about the relationship between 
two categorical variables in a population. 

• For young adults in the United States, is gender related to body 
image? 

• Is alcohol abuse by New York firefighters dependent on 
participation in the 9/11 rescue operation? 

• In the United States, is race associated with political views 
(conservative, moderate, liberal)? 

Test of Homogeneity: Test a claim about the distribution of a 
categorical variable in several populations. 

• Does the use of steroids in collegiate athletics differ across the 
three NCAA divisions? 

• Was the distribution of political views (liberal, moderate, 
conservative) different for the last three presidential elections 
in the United States? 
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198. Introduction: Chi-Square 
Test for One-Way Tables 

What you’ll learn to do: Conduct a chi-square 
goodness-of-fit test. Interpret the conclusion in 
context. 

LEARNING OBJECTIVES 

• Conduct a chi-square goodness-of-fit test. 
Interpret the conclusion in context. 
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199. Goodness-of-Fit (1 of 2) 

 

Learning Objectives 

• Conduct a chi-square goodness-of-fit test. 
Interpret the conclusion in context. 

In this section, we learn a new hypothesis test called the chi-square 
goodness-of-fit test. A goodness-of-fit test determines whether or 
not the distribution of a categorical variable in a sample fits a 
claimed distribution in the population. 

We can answer the following research questions with a chi-
square goodness-of-fit test: 

• According to the manufacturer of M&M candy, the color 
distribution for plain chocolate M&Ms is 13% brown, 13% red, 
14% yellow, 24% blue, 20% orange, and 16% green. Do the 
M&Ms in our sample suggest that the color distribution is 
different? 

• During the presidential election of 2008, the Pew Research 
Center collected survey data that suggested that 24% of 
registered voters were liberal, 38% were moderate, and 38% 
were conservative. Is the distribution of political views 
different this year? 

• The distribution of blood types for whites in the United States 
is 45% type O, 41% type A, 10% type B, and 4% type AB. Is the 
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distribution of blood types different for Asian Americans? 

The null hypothesis states a specific distribution of proportions 
for each category of the variable in the population. The alternative 
hypothesis says that the distribution is different from that stated 
in the null hypothesis. To test our hypotheses, we select a random 
sample from the population and determine the distribution of the 
categorical variable in the data. Of course, we need a method for 
comparing the observed distribution in the sample to the expected 
distribution stated in the null hypothesis. 

Example 

Distribution of Color in Plain M&M 
Candies 

According to the manufacturer of M&M candy, the color 
distribution for plain chocolate M&Ms is 13% brown, 13% 
red, 14% yellow, 24% blue, 20% orange, 16% green. This 
statement about the distribution of color in plain M&Ms is 
the null hypothesis. The alternative hypothesis says that 
this is not the distribution. 

H0: The color distribution for plain M&Ms is 13% 
brown, 13% red, 14% yellow, 24% blue, 20% orange, 
16% green. 

Ha: The color distribution for plain M&Ms is 
different from the distribution stated in the null 
hypothesis. 
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We select a random sample of 300 plain M&M candies to 
test these hypotheses. If the sample has the distribution of 
color stated in the null hypothesis, then we expect 13% of 
the 300 to be brown, 13% of 300 to be red, 14% of 300 to be 
yellow, 24% of 300 to be blue, and so on. Here are the 
expected counts of each color for a sample of 300 candies: 

Of course, the distribution of color will vary in different 
samples, so we need to develop a way to measure how far a 
sample distribution is from the null distribution, something 
analogous to a z-score or T-score. Before we discuss this 
new measure, let’s look at two random samples selected 
from the null distribution to practice recognizing different 
amounts of variability. We can compare the distributions 
visually using ribbon charts. 

Which random sample deviates the most from the null 
distribution? We address this question in the next activity. 
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Learn By Doing 

Observed Counts for Two Random 
Samples 

Here are the observed counts for the two random 
samples shown above. This is the same information shown 
in the ribbon charts. 

https://assessments.lumenlearning.com/assessments/
3794 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=225 
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Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=225 

Statisticians use the following formula to measure how far the 
observed data are from the null distribution. It is called the chi-
square test statistic. The Greek letter chi is written χ. 

Notes about this formula: 

• Recall that the symbol ∑ means sum. Each category 
contributes a term to the sum, so the chi-square test statistic 
is based on the entire distribution. If the categorical variable 
has six categories, then the chi-square test statistic has six 
terms. If the categorical variable has three categories, then the 
chi-square test statistic has three terms, and so on. 

• Notice that the difference “observed minus expected” for each 
category is part of the formula, but each difference is squared. 
This is necessary because the differences will add to 0, as we 
saw in the previous activity. 

• Notice also that each squared difference is divided by the 
expected count for that category. The chi-square test statistic 
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looks at the difference between the observed and expected 
counts relative to the size of the expected count. 

Example 

Calculating χ2 

For Sample 1, the chi-square test statistic is 
approximately 12.94. For Sample 2, the chi-square test 
statistic is approximately 1.53. Usually, we use technology to 
calculate χ2, but here we show two calculations in detail to 
illustrate how the formula works. Notice that we are adding 
six terms. Each term represents the deviation for one color 
category. 

Comment: In Sample 1, notice that both blue and green 
observed counts deviate from the expected counts by 10 
candies. But green contributes more to the chi-square test 
statistic. This makes sense because the chi-square test 
statistic measures relative difference. Relative to the 
expected count of 48 green candies, an absolute error of 10 
is large. It is almost 20% of the expected count. (10/48 is 
about 0.20). The squared difference relative to the expected 
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count is 100/48, about 2.08. Relative to the expected count 
of 72 blue candies, an error of 10 candies is smaller. It is 
only about 14% of the expected count (10/72 is about 0.14). 
The squared difference relative to the expected count is 
100/72, about 1.39. 

Here is the chi-square calculation for Sample 2. 

Calculating χ2 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=225 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=225 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=225 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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herkimerstatisticssocsci/?p=225 
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200. Goodness-of-Fit (2 of 2) 

 

Learning Objectives 

• Conduct a chi-square goodness-of-fit test. 
Interpret the conclusion in context. 

Here we continue with the details of the chi-square goodness-of-fit 
hypothesis test. A goodness-of-fit test determines whether or not 
the distribution of a categorical variable in a sample fits a claimed 
distribution in the population. The chi-square test statistic is our 
measure of how much the sample distribution deviates from the 
population distribution. 

As with other hypothesis tests, we need to be able to model 
the variability we expect in samples if the null hypothesis is true. 
Then we can determine whether the chi-square test statistic from 
the data is unusual or typical. An unusual χ2 value suggests that 
there are statistically significant differences between the sample 
data and the null distribution and provides evidence against the 
null hypothesis. This is the same logic we have been applying with 
hypothesis testing. 
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Example 

Distribution of Color in Plain M&M 
Candies 

Recall the claim made by the manufacturer of M&M 
candy: the color distribution for plain chocolate M&Ms is 
13% brown, 13% red, 14% yellow, 24% blue, 20% orange, 16% 
green. We used this distribution as our null hypothesis. 

H0: The color distribution for plain M&Ms is 13% 
brown, 13% red, 14% yellow, 24% blue, 20% orange, 
16% green. 

Ha: The color distribution for plain M&Ms is 
different from the distribution stated in the null 
hypothesis. 

Suppose we buy a large bag of plain M&M candies to test 
these hypotheses. We randomly select 300 from the bag 
and view this as a random sample from the population of all 
plain M&M candies. Our observed counts along with the 
expected counts are shown in the following ribbon chart 
and the table. Recall that the expected counts come from 
the null hypothesis. 
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We see that the sample distribution is very close to the 
null distribution for some colors and not others. The 
deviation appears largest for blue and orange. When we 
calculate the chi-square statistic, we see that these colors 
contribute the most to the chi-square value. 

What can we conclude? Is this chi-square value unusual 
or typical? To answer these questions, we must take many 
random samples from the population described by the null 
hypothesis. As we have done before, we use a simulation to 
take random samples. We do this in the next activity. 
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Learn By Doing 

Reasoning from the Chi-Square Sampling 
Distribution 

Click here to open the simulation. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

Learn By Doing 

Reasoning from the Chi-Square Sampling 
Distribution 

Recall the distribution of political views for registered 
voters in 2008: 24% liberal, 38% moderate, and 38% 
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conservative. We want to determine if the distribution is 
the same this year. 

H0: The distribution of political views this year is 
0.24 liberal, 0.38 moderate, 0.38 conservative. 

Ha: The distribution of political views this year 
differs from the 2008 distribution stated in the null 
hypothesis. 

Previously, we used the data shown in the table to 
calculate the chi-square test statistic of 1.61. 

What can we conclude? 

Click here to open the simulation. Use this simulation to 
select at least 40 random samples from the null 
distribution. 

Use the simulation below these next questions to select 
at least 40 random samples from the null distribution. 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

Now mark each conclusion valid or invalid. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

In the previous activities, we based our conclusions on a relatively 
small number of random samples. If we continued taking random 
samples, the resulting distribution of chi-square statistics has a 
pattern that can be described by a mathematical model, called the 
chi-square distribution. As with other models for sampling 
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distributions, this model is a probability model. The total area under 
the curve equals 1. We again use the area under the curve to 
represent the probability of sample results occurring if the null 
hypothesis is true. This means we again use the mathematical model 
with technology to find a P-value. 

The Chi-Square Distribution 

Unlike other sampling distributions we have studied, the chi-square 
model does not have a normal shape. It is skewed to the right. Like 
the T-model, the chi-square model is a family of curves that depend 
on degrees of freedom. For a chi-square goodness-of-fit test, the 
degrees of freedom is the number categories minus 1. (Sometimes 
this is written (r − 1), where r represents “rows” in the one-way 
table of observed counts.) The mean of the chi-square distribution 
is equal to the degrees of freedom. 

A chi-square model is a good fit for the distribution of the chi-
square test statistic only if the following conditions are met: 

• The sample is randomly selected. 
• All of the expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to 
find the P-value. We use the same logic that we use in all hypothesis 
tests to draw a conclusion based on the P-value. If the P-value is at 
least as small as the significance level, we reject the null hypothesis 
and accept the alternative hypothesis. 

The P-value is the likelihood that results from random samples 
have a χ2 value equal to or greater than that calculated from the 
data. As before, the P-value is a conditional probability based on the 
condition that the null hypothesis is true. For different degrees of 
freedom, the same χ2 value gives different P-values. For example, a 
chi-square value of 8 is statistically significant for α = 0.05 with 3 
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degrees of freedom. This is not true for 5 degrees of freedom. As 
shown below, this is due to the change in the chi-square curve. 
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Learn By Doing 

Hypothesis Test about the Color 
Distribution for Plain M&Ms 

Recall the hypothesis test about the color distribution for 
plain M&Ms. 

H0: The color distribution for plain M&Ms is 13% 
brown, 13% red, 14% yellow, 24% blue, 20% orange, 
16% green. 

Ha: The color distribution for plain M&Ms is 
different from the distribution stated in the null 
hypothesis. 

From the null hypothesis, we determined the expected 
counts for a sample of 300. A random sample of 300 M&Ms 
gave the observed counts shown in the table. We calculated 
a chi-square statistic of 9.23. 

Click here to open the simulation. 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=226 

Comment 

Goodness-of-fit is an extension of the hypothesis test for one 
population proportion that we learned in Inference for One 
Proportion. Both of these hypothesis tests focus on a categorical 
variable in one population. In the hypothesis test for one population 
proportion, we focus on one category of the variable that we call 
“a success.” We make a claim about the proportion of “successes” in 
the population. For example, we previously investigated the claim 
that 20% of plain M&Ms are orange. In a chi-square goodness-of-
fit test, we focus on the entire distribution of categories for the 
variable. So we investigate a claim that the color distribution for 
plain M&Ms is 13% brown, 13% red, 14% yellow, 24% blue, 20% 
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orange, 16% green. The chi-square goodness-of-fit test does not 
give information about the deviation for specific categories. It gives 
a more general conclusion of “seems to fit the null distribution” or 
“does not fit the null distribution.” 

Let’s Summarize 

In “Chi-Square Test for One-Way Tables,” we learned an inference 
procedure called the chi-square goodness-of-fit test. A goodness-
of-fit test determines if the distribution of a categorical variable in 
a sample fits a claimed distribution in the population, or not. 

We can answer the following research questions with a chi-
square goodness-of-fit test: 

• The distribution of blood types in the United States is 45% 
type O, 41% type A, 10% type B, and 4% type AB. Is the 
distribution of blood types the same in China? 

• The Mars Company claims that 24% of M&M plain milk 
chocolate candies are blue, 13% brown, 16% green, 20% 
orange, 10% red, and 14% yellow. Do the M&Ms in our sample 
suggest that the color distribution is different? 

The Chi-Square Test Statistic and Distribution 

The chi-square test statistic χ2 measures how far the observed data 
are from the null hypothesis by comparing observed counts and 
expected counts. Expected counts are the counts we expect to see 
if the null hypothesis is true. 

The chi-square model is a family of curves that depend on degrees 
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of freedom. For a one-way table the degrees of freedom equals (r – 
1). All chi-square curves are skewed to the right with a mean equal 
to the degrees of freedom. 

A chi-square model is a good fit for the distribution of the chi-
square test statistic only if the following conditions are met: 

• The sample is randomly selected. 
• All expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to 
find the P-value. We use the same logic that we use in all hypothesis 
tests to draw a conclusion based on the P-value. If the P-value is at 
least as small as the significance level, we reject the null hypothesis 
and accept the alternative hypothesis. The P-value is the likelihood 
that results from random samples have a χ2 value equal to or greater 
than that calculated from the data if the null hypothesis is true. For 
different degrees of freedom, the same χ2 value gives different P-
values. 
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201. Introduction: Chi-Square 
Tests for Two-Way Tables 

What you’ll learn to do: Conduct chi-square tests 
of independence and homogeneity. 

LEARNING OBJECTIVES 

• Conduct a chi-square test of independence. 
Interpret the conclusion in context. 

• Conduct a chi-square test of homogeneity. 
Interpret the conclusion in context. 

Introduction: Chi-Square Tests for
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202. Test of Independence (1 
of 3) 

 

Learning Objectives 

• Conduct a chi-square test of independence. 
Interpret the conclusion in context. 

In this section, we learn two new hypothesis tests: a chi-square 
test of independence and a chi-square test of homogeneity. As the 
names imply, these two tests both use the same chi-square test 
statistic that we learned previously to compare observed and 
expected counts. In addition, P-values come from the same family 
of chi-square distributions. Therefore, much of what we learned in 
the previous section, “Chi-Square Test for One-Way Tables,” will be 
useful here. 

We begin with the chi-square test of independence. This test 
determines if there is a relationship between two categorical 
variables in the population. It is called a test of independence because 
“no relationship” means “independent.” If there is a relationship 
between the two variables in the population, then they are 
dependent. 

We can answer the following research questions with a chi-
square test of independence: 

• For young adults in the United States, is gender related to body 
image? 
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• Is alcohol abuse by New York firefighters dependent on 
participation in the 9/11 rescue operation? 

• In the United States, is race associated with political views 
(conservative, moderate, liberal)? 

The null hypothesis states that the two categorical variables are 
not related in the population. In other words, the variables are 
independent. The alternative hypothesis says that the two 
categorical variables are related in the population. In other words, 
the variables are dependent. To test our hypotheses, we select a 
random sample from the population and gather data on two 
categorical variables from each individual. As with all chi-square 
tests, the expected counts reflect the null hypothesis. So we need 
to determine what we expect to see in a sample if the variables are 
independent. As before, the chi-square test statistic measures the 
amount that the observed counts in the sample deviate from the 
expected counts. 

Example 

Gender and Body Image 

What is your perception of your own body? Do you feel 
that you are overweight, underweight, or about right? A 
random sample of 1,200 U.S. college students answered this 
question as part of a larger survey. The following table 
shows part of the responses. 
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Notice that the sample is a random sample from a single 
population: U.S. college students. Notice also that we 
collected data on two categorical variables for each student: 
gender and body image. This is the type of situation that is 
appropriate for a chi-square test of independence. 

Step 1: State the hypotheses. 

Here are two equivalent ways we can state the 
hypotheses for a test of independence. 

H0: There is no relationship between gender and 
body image for U.S. college students. 

Ha: There is a relationship between gender and 
body image for U.S. college students. 

We could also state the hypotheses like this: 

H0: Gender and body image are independent in the 
population of U.S. college students. 

Ha: Gender and body image are dependent in the 
population of U.S. college students. 

Step 2: Collect and analyze the data. 

We summarized the data for this sample in a two-way 
table: 
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To investigate the relationship between gender and body 
image, we compare the percentage of males and females 
who gave each body image response. In Relationships in 
Categorical Data with Intro to Probability, we called these 
conditional percentages. 

Comment: In this situation, gender is the explanatory 
variable. Body image is the response variable. We compare 
the distribution of the response variable (body image) for 
the groups defined by the explanatory variable (males and 
females). This means that explanatory category totals are 
the denominator of each fraction. In this case, we use male 
and female totals in the denominators. 

We graphed these conditional percentages using ribbon 
charts for a visual comparison. In this sample, we can see 
that a larger percentage of females (73.7%) than males (67%) 
perceive their body weight to be “about right.” A larger 
percentage of females (21.4%) than males (16.4%) also 
perceive themselves to be overweight. Males are as likely to 
say they are overweight (16.4%) as underweight (16.6%), but 
females as much less likely to perceive themselves to be 
underweight (4.9%). 
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What do these conditional percentages have to do with 
independence? 

Recall the definition of independence from Probability 
and Probability Distribution. Two events, A and B, are 
independent if the probability of A is the same as the 
probability of A when B has already occurred. We write this 
statement as P(A) = P(A | B). In this context, if gender and 
body image are independent variables, then gender does 
not affect the probability that a student will give a specific 
answer to the body image question. We use relative 
frequencies from the sample to represent these 
probabilities. 

For example, we would expect the following probabilities 
to be the same if gender and body image are independent 
variables. 

P(about right) = 855/1,200 = 0.713. 
P(about right | female) = 560/760 = 0.737, which is 

the conditional percent shown in the ribbon chart for 
females. 

P(about right | male) = 295/440 = 0.67, also a 
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conditional percent shown in the ribbon chart for 
males. 

Obviously, when we compare the conditional percentages 
for males and females in this sample, we see that they 
differ. But do they differ enough to conclude that variables 
are dependent? Or could these results have come from a 
population where gender and body image are independent? 
In which case, the differences are due to chance fluctuation 
that happens in random sampling. We need to conduct a 
test of independence to find out. 

Learn By Doing 

Alcoholism Risk in 9/11 Responders 

Some firefighters and other first responders to the World 
Trade Center on September 11, 2001, have experienced 
symptoms of traumatic stress, depression, anxiety, and 
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drinking problems. Cornell University researchers 
conducted a survey of a random sample of New York 
firefighters, some of whom had participated in the 9/11 
rescue efforts. The report’s title is “On the Front Line: The 
Work of First Responders in a Post-9/11 World.” To see the 
report, click here. We use data from this report to 
investigate the question: Are alcohol-related problems 
among New York firefighters associated with participation in 
the 9/11 rescue? 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=228 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=228 

1168  |  Test of Independence (1 of 3)

https://s3-us-west-2.amazonaws.com/oerfiles/Concepts+in+Statistics/datasets/FirefighterStress.pdf
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=228#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=228#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=228#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=228#pb-interactive-content


An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=228 

 

Test of Independence (1 of 3)  |  1169

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=228#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=228#pb-interactive-content


203. Test of Independence (2 
of 3) 

 

Learning Objectives 

• Conduct a chi-square test of independence. 
Interpret the conclusion in context. 

Here we continue our chi-square test of independence for the 
variables gender and body image in the population of U.S. college 
students. 

Example 

Gender and Body Image Continued 

Step 1: State the hypotheses. 

Here are our hypotheses from the previous page: 

H0: There is no relationship between gender and 
body image for U.S. college students. (The variables 
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are independent.) 
Ha: There is a relationship between gender and 

body image for U.S. college students. (The variables 
are dependent.) 

Step 2: Collect and analyze the data. 

If the variables are independent, the percentage of males 
and females with a given response will be the same or at 
least close. Previously, we determined that in our sample, 
there are differences in the percentage of males and 
females who answer “about right,” “overweight,” or 
“underweight.” 

 

We need to determine if these differences are typical in 
random samples from a population where gender and body 
image are independent. Perhaps the differences we see in 
this sample are just fluctuations expected in random 
sampling. Or perhaps these differences are too large to be 
explained by chance. We will not know until we complete 
the hypothesis test. 

Step 3: Assess the evidence. 

We need to determine the expected values and the chi-
square test statistic so that we can find the P-value. 

Test of Independence (2 of 3)  |  1171



Calculating Expected Values for a Test of Independence 

Expected counts always describe what we expect to see 
in a sample if the null hypothesis is true. In this situation, if 
gender and body image are independent, then we expect 
the probability that a student answers “about right” in the 
sample to be the same probability that a male (or a female) 
student answers “about right” (similarly for “overweight” or 
“underweight” responses). 

Here are the calculations of expected counts for the 
response “about right”: 

Probability that a student will answer “about right”: 
P(about right) = (855/1,200) = 0.7125 

Expected count of females in the sample who will 
answer “about right”: 0.7125(760) = 541.5 

Expected count of males in the sample who will 
answer “about right”: 0.7125(440) = 313.5 

 

Here are the calculations of expected counts for the 
response “overweight”: 

• Probability that a student will answer “overweight”: 
P(overweight) = (235/1,200) = 0.1958 

• Expected count of females in the sample who will 
answer “overweight”: 0.1958(760) = 148.8 
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• Expected count of males in the sample who will 
answer “overweight”: 0.1958(440) = 86.2 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=229 

Learn By Doing 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 
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Example 

More on Gender and Body Image 

Checking Conditions 

The conditions for use of the chi-square distribution are 
the same as we learned previously: 

• The sample is random. 
• All of the expected counts are 5 or greater. 

Since the data meets the conditions, we can proceed with 
calculating χ2 test statistic. 

Calculating the Chi-Square Test Statistic 

We calculate the chi-square test statistic as we did in 
“Chi-Square Test for One-Way Tables.” 
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We will use technology to calculate the chi-square value. 
But for this sample, we will show the calculation. 

 

Finding Degrees of Freedom and the P-Value 

For a chi-square tests based on two-way tables, the 
degrees of freedom are 

(number of explanatory categories – 1) × (number of 
response categories – 1) 

You will also see this written: (r − 1)(c − 1), where r is the 
number of rows and c is the number of columns in the two-
way table (when we write the table without row and 
column totals). In this case the degrees of freedom are (2 − 
1)(3 −1 ) = 2. 

We use the chi-square distribution with df = 2 to find the 
P-value. Note that the chi-square test statistic for this 
sample is so large that it is off the scale used in the 
simulation. So we conclude that the P-value is essentially 
zero. 
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Step 4: Conclusion 

The relationship between gender and body image is 
statistically significant in this sample. We reject the null 
hypothesis and accept the alternative hypothesis. Gender 
and body image are dependent variables in the population 
of U.S. college students. (P-value is essentially 0.) 
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Learn By Doing 

More on Gender and Body Piercing 

A study was done on the relationship between gender 
and ear piercing among high-school students. A sample of 
1,000 students was chosen, then classified according to 
both gender and whether or not they had either of their 
ears pierced. The following information is available: 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=229 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=229 
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204. Test of Independence (3 
of 3) 

 

Learning Objectives 

• Conduct a chi-square test of independence. 
Interpret the conclusion in context. 

On this page, we practice the chi-square test for independence in 
its entirety and learn how to use statistical software to conduct this 
test. We also investigate the effect of sample size on the chi-square 
test statistic. 

Learn By Doing 

A Real Court Case 

In the early 1970s, a young man challenged an Oklahoma 
state law that prohibited the sale of 3.2% beer to males 
under age 21 but allowed its sale to females in the same age 
group. The case (Craig v. Boren, 429 U.S. 190, 1976) was 
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ultimately heard by the U.S. Supreme Court. The state of 
Oklahoma argued that the law improved traffic safety. One 
of the three main pieces of data presented to the court was 
the result of a “random roadside survey.” This survey 
gathered information on gender and whether or not the 
driver had been drinking alcohol in the previous 2 hours. A 
total of 619 drivers under 21 years of age were included in 
the survey. 

Please click here to open the simulation for use in the 
following activity. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=230 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=230 
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Comment: The Effect of Sample Size on 
Chi-Square 

With other hypothesis tests, we have seen that sample size can 
affect the P-value and our conclusion. This is also true for chi-
square. To illustrate this idea, we multiplied all of the counts in the 
Oklahoma data by 3. 

Notice that the conditional percentages do not change, so the 
new “data” shows the same relationship between gender and 
drinking before driving. The probability that a driver under the age 
of 21 drinks alcohol before driving is still about 15.0% (279/1857). 
Males are still more likely to consume alcohol before driving (231/
1443 = 16.0%) than are females (48/414 = 11.6%), with the same 
difference of 4.4% that we saw in the original data. 

We used technology to find expected counts and the chi-square 
test statistic. 
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Notice that multiplying the observed counts by 3 also triples the 
expected counts and the chi-square value. This increase in the chi-
square value gives a statistically significant P-value of 0.0267, which 
changes our conclusion. With this larger sample, the evidence is 
strong enough to reject the null hypothesis. We conclude that 
gender is associated with drinking alcohol before driving. The 
variables are dependent for drivers under the age of 21 in Oklahoma. 
With this sample size, the data provides evidence in support of the 
Oklahoma law that forbids sale of 3.2% beer to males and permits it 
to females with the goal of improving traffic safety. 

What’s the point? We see once again that sample size affects the 
P-value in a hypothesis test. This means that a small sample may not 
detect a relationship that exists between two categorical variables 
in a population. Conversely, a large sample may indicate that a 
relationship is statistically significant on the basis of differences in 
observed and expected counts that are not important in a practical 
sense. 
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205. Test of Homogeneity 

 

Learning Objectives 

• Conduct a chi-square test of homogeneity. 
Interpret the conclusion in context. 

We have learned the details for two chi-square tests, the goodness-
of-fit test, and the test of independence. Now we focus on the third 
and last chi-square test that we will learn, the test for homogeneity. 
This test determines if two or more populations (or subgroups of 
a population) have the same distribution of a single categorical 
variable. 

The test of homogeneity expands the test for a difference in 
two population proportions, which is the two-proportion Z-test 
we learned in Inference for Two Proportions. We use the two-
proportion Z-test when the response variable has only two outcome 
categories and we are comparing two populations (or two 
subgroups.) We use the test of homogeneity if the response variable 
has two or more categories and we wish to compare two or more 
populations (or subgroups.) 

We can answer the following research questions with a chi-
square test of homogeneity: 

• Does the use of steroids in collegiate athletics differ across the 
three NCAA divisions? 

• Was the distribution of political views (liberal, moderate, 
conservative) different for last three presidential elections in 
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the United States? 

The null hypothesis states that the distribution of the categorical 
variable is the same for the populations (or subgroups). In other 
words, the proportion with a given response is the same in all of 
the populations, and this is true for all response categories. The 
alternative hypothesis says that the distributions differ. 

Note: Homogeneous means the same in structure or composition. 
This test gets its name from the null hypothesis, where we claim 
that the distribution of the responses are the same (homogeneous) 
across groups. 

To test our hypotheses, we select a random sample from each 
population and gather data on one categorical variable. As with all 
chi-square tests, the expected counts reflect the null hypothesis. 
We must determine what we expect to see in each sample if the 
distributions are identical. As before, the chi-square test statistic 
measures the amount that the observed counts in the samples 
deviate from the expected counts. 

Example 

Steroid Use in Collegiate Sports 

In 2006, the NCAA published a report called “Substance 
Use: NCAA Study of Substance Use of College Student-
Athletes.” We use data from this report to investigate the 
following question: Does steroid use by student athletes differ 
for the three NCAA divisions? 

The data comes from a random selection of teams in each 
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NCAA division. The sampling plan was somewhat complex, 
but we can view the data as though it came from a random 
sample of athletes in each division. The surveys are 
anonymous to encourage truthful responses. 

To see the NCAA report on substance use, click here. 

A note on NCAA divisions: The National 
Collegiate Athletic Association (NCAA) is divided 
into three divisions and oversees a wide range of 
collegiate sports. Division I schools have to 
sponsor more sports teams. These schools tend 
to be large universities with large athletic 
budgets supplemented by revenue from the 
games. They must offer athletic scholarships. 
Division II schools tend to be the smaller public 
universities and many private institutions. They 
have much smaller budgets that come solely 
from the college. The NCAA limits the amount 
Division II colleges can spend on athletic 
scholarships. Division III consists of colleges and 
universities that treat athletics as an 
extracurricular activity for students, instead of a 
source of revenue. These institutions do not 
offer athletic scholarships. 

Step 1: State the hypotheses. 

In the test of homogeneity, the null hypothesis says that 
the distribution of a categorical response variable is the 
same in each population. In this example, the categorical 
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response variable is steroid use (yes or no). The populations 
are the three NCAA divisions. 

H0: The proportion of athletes using steroids is the 
same in each of the three NCAA divisions. 

Ha: The proportion of athletes using steroids is not 
same in each of the three NCAA divisions. 

Note: These hypotheses imply that the proportion of 
athletes not using steroids is also the same in each of the 
three NCAA divisions, so we don’t need to state this 
explicitly. For example, if 2% of the athletes in each division 
are using steroids, then 98% are not. 

Here is an alternative way we could state the hypotheses 
for a test of homogeneity. 

H0: For each of the three NCAA divisions, the 
distribution of “yes” and “no” responses to the 
question about steroid use is the same. 

Ha: The distribution of responses is not the same. 

Step 2: Collect and analyze the data. 

We summarized the data from these three samples in a 
two-way table. 

 

We use percentages to compare the distributions of yes 
and no responses in the three samples. This step is similar 
to our data analysis for the test of independence. 

1188  |  Test of Homogeneity



 

We can see that Division I and Division II schools have 
essentially the same percentage of athletes who admit 
steroid use (about 1.2%). Not surprisingly, the least 
competitive division, Division III, has a slightly lower 
percentage (about 1.0%). Do these results suggest that the 
proportion of athletes using steroids is the same for the 
three divisions? Or is the difference seen in the sample of 
Division III schools large enough to suggest differences in 
the divisions? After all, the sample sizes are very large. We 
know that for large samples, a small difference can be 
statistically significant. Of course, we have to conduct the 
test of homogeneity to find out. 

Note: We decided not to use ribbon charts for visual 
comparison of the three distributions because the 
percentage admitting steroid use is too small in each 
sample to be visible. 

Step 3: Assess the evidence. 

We need to determine the expected values and the chi-
square test statistic so that we can find the P-value. 
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Calculating Expected Values for a Test of Homogeneity 

Expected counts always describe what we expect to see 
in a sample if the null hypothesis is true. In this situation, 
we expect the percentage using steroids to be the same for 
each division. What percentage do we use? We find the 
percentage using steroids in the combined samples. This 
calculation is the same as we did when finding expected 
counts for a test of independence, though the logic of the 
calculation is subtly different. 

 

Here are the calculations for the response “yes”: 

• Percentage using steroids in combined samples: 
220/19,377 = 0.01135 = 1.135% 

Expected count of steroid users for Division I is 1.135% of 
Division I sample: 

• 0.01135(8,543) = 96.96 

Expected count of steroid users for Division II is 1.135% of 
Division II sample: 

• 0.01135(4,341) = 49.27 
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Expected count of steroid users for Division III is 1.135% 
of Division III sample: 

• 0.01135(6,493) = 73.70 

Checking Conditions 

The conditions for use of the chi-square distribution are 
the same as we learned previously: 

• A sample is randomly selected from each 
population. 

• All of the expected counts are 5 or greater. 

Since this data meets the conditions, we can proceed 
with calculating the χ2 test statistic. 

Calculating the Chi-Square Test Statistic 

There are no changes in the way we calculate the chi-
square test statistic. 

We use technology to calculate the chi-square value. For 
this example, we show the calculation. There are six terms, 
one for each cell in the 3 × 2 table. (We ignore the totals, as 
always.) 

 

Finding Degrees of Freedom and the P-Value 

For chi-square tests based on two-way tables (both the 
test of independence and the test of homogeneity), the 
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degrees of freedom are (r − 1)(c − 1), where r is the number 
of rows and c is the number of columns in the two-way 
table (not counting row and column totals). In this case, the 
degrees of freedom are (3 − 1)(2 − 1) = 2. 

We use the chi-square distribution with df = 2 to find the 
P-value. The P-value is large (0.4561), so we fail to reject the 
null hypothesis. 

 

Step 4: Conclusion. 

The data does not provide strong enough evidence to 
conclude that steroid use differs in the three NCAA 
divisions (P-value = 0.4561). 
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Learn By Doing 

First Use of Anabolic Steroids by NCAA 
Athletes 

The NCAA survey includes this question: “When, if ever, 
did you start using anabolic steroids?” The response 
options are: have never used, before junior high, junior 
high, high school, freshman year of college, after freshman 
year of college. We focused on those who admitted use of 
steroids and compared the distribution of their responses 
for the years 1997, 2001, and 2005. (These are the years that 
the NCAA conducted the survey. Counts are estimates from 
reported percentages and sample size.) Recall that the 
NCAA uses random sampling in its sampling design. 

 

Please click here to open the simulation for use in the 
following activity. 
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We now know the details for the chi-square test for homogeneity. 
We conclude with two activities that will give you practice 
recognizing when to use this test. 

1196  |  Test of Homogeneity

https://library.achievingthedream.org/herkimerstatisticssocsci/?p=231#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=231#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=231#pb-interactive-content
https://library.achievingthedream.org/herkimerstatisticssocsci/?p=231#pb-interactive-content


Learn By Doing 

Gender and Politics 

Consider these two situations: 

A: Liberal, moderate, or conservative: Are there 
differences in political views of men and women in 
the United States? We survey a random sample of 100 
U.S. men and 100 U.S. women. 

B: Do you plan to vote in the next presidential 
election? We ask a random sample of 100 U.S. men 
and 100 U.S. women. We look for differences in the 
proportion of men and women planning to vote. 

An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=231 

An interactive or media element has been 

excluded from this version of the text. You can 
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view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=231 

Learn By Doing 

Steroid Use for Male Athletes in NCAA 
Sports 

We plan to compare steroid use for male athletes in 
NCAA baseball, basketball, and football. We design two 
different sampling plans. 

A: Survey distinct random samples of NCAA 
athletes from each sport: 500 baseball players, 400 
basketball players, 900 football players. 

B. Survey a random sample of 1,800 NCAA male 
athletes and categorize players by sport and admitted 
steroid use. Responses are anonymous. 
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An interactive or media element has been 

excluded from this version of the text. You can 

view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=231 

Let’s Summarize 

In “Chi-Square Tests for Two-Way Tables,” we discussed two 
different hypothesis tests using the chi-square test statistic: 

• Test of independence for a two-way table 
• Test of homogeneity for a two-way table 

Test of Independence for a Two-Way Table 

• In the test of independence, we consider one population and 
two categorical variables. 

• In Probability and Probability Distribution, we learned that two 
events are independent if P(A|B) = P(A), but we did not pay 
attention to variability in the sample. With the chi-square test 
of independence, we have a method for deciding whether our 
observed P(A|B) is “too far” from our observed P(A) to infer 
independence in the population. 
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• The null hypothesis says the two variables are independent (or 
not associated). The alternative hypothesis says the two 
variables are dependent (or associated). 

• To test our hypotheses, we select a single random sample and 
gather data for two different categorical variables. 

• Example: Do men and women differ in their perception of their 
weight? Select a random sample of adults. Ask them two 
questions: (1) Are you male or female? (2) Do you feel that you 
are overweight, underweight, or about right in weight? 

Test of Homogeneity for a Two-Way Table 

• In the test of homogeneity, we consider two or more 
populations (or two or more subgroups of a population) and a 
single categorical variable. 

• The test of homogeneity expands on the test for a difference in 
two population proportions that we learned in Inference for 
Two Proportions by comparing the distribution of the 
categorical variable across multiple groups or populations. 

• The null hypothesis says that the distribution of proportions 
for all categories is the same in each group or population. The 
alternative hypothesis says that the distributions differ. 

• To test our hypotheses, we select a random sample from each 
population or subgroup independently. We gather data for one 
categorical variable. 

• Example: Is the rate of steroid use different for different men’s 
collegiate sports (baseball, basketball, football, tennis, track/
field)? Randomly select a sample of athletes from each sport 
and ask them anonymously if they use steroids. 

The difference between these two tests is subtle. They differ 
primarily in study design. In the test of independence, we select 
individuals at random from a population and record data for two 
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categorical variables. The null hypothesis says that the variables 
are independent. In the test of homogeneity, we select random 
samples from each subgroup or population separately and collect 
data on a single categorical variable. The null hypothesis says that 
the distribution of the categorical variable is the same for each 
subgroup or population. 

Both tests use the same chi-square test statistic. 

The Chi-Square Test Statistic and Distribution 

For all chi-square tests, the chi-square test statistic χ2 is the same. It 
measures how far the observed data are from the null hypothesis by 
comparing observed counts and expected counts. Expected counts 
are the counts we expect to see if the null hypothesis is true. 

The chi-square model is a family of curves that depend on degrees 
of freedom. For a two-way table, the degrees of freedom equals (r − 
1)(c − 1). All chi-square curves are skewed to the right with a mean 
equal to the degrees of freedom. 

A chi-square model is a good fit for the distribution of the chi-
square test statistic only if the following conditions are met: 

• The sample is randomly selected. 
• All expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to 
find the P-value. We use the same logic that we have used in all 
hypothesis tests to draw a conclusion based on the P-value. If the P-
value is at least as small as the significance level, we reject the null 
hypothesis and accept the alternative hypothesis. The P-value is the 
likelihood that results from random samples have a χ2 value equal to 
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or greater than that calculated from the data if the null hypothesis 
is true. 
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206. Putting It Together: 
Chi-Square Tests 

 

Let’s Summarize 

In this module, Chi-Square Tests, we discussed three different 
hypothesis tests using the chi-square test statistic: 

• Goodness-of-fit for a one-way table 
• Test of independence for a two-way table 
• Test of homogeneity for a two-way table 

Goodness-of-Fit test for a One-Way Table 

• In a goodness-of-fit test, we consider one population and one 
categorical variable. 

• The goodness-of-fit test expands the z-test for a population 
proportion that we learned in Inference for One Proportion by 
looking at the distribution of proportions for all categories 
defined by the categorical variable. 

• The goodness-of-fit test determines whether a set of 
categorical data comes from a claimed distribution. The null 
hypothesis is that the proportion in each category in the 
population has a specific distribution. The alternative 
hypothesis says that the proportions in the population are not 
distributed as stated in the null hypothesis. 

• To test our hypotheses, we select a random sample from the 
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population and gather data for one categorical variable. 

Test of Independence for a Two-Way Table 

• In the test of independence, we consider one population and 
two categorical variables. 

• In Probability and Probability Distribution, we learned that two 
events are independent if P(A|B) = P(A), but we did not pay 
attention to variability in the sample. With the chi-square test 
of independence, we have a method for deciding whether our 
observed P(A|B) is “too far” from our observed P(A) to infer 
independence in the population. 

• The null hypothesis says the two variables are independent (or 
not associated). The alternative hypothesis says the two 
variables are dependent (or associated). 

• To test our hypotheses, we select a single random sample and 
gather data for two different categorical variables. 

Test of Homogeneity for a Two-Way Table 

• In the test of homogeneity we consider two or more 
populations (or two or more subgroups of a population) and a 
single categorical variable. 

• The test of homogeneity expands on the test for a difference in 
two population proportions that we learned in Inference for 
Two Proportions by comparing the distribution of the 
categorical variable across multiple groups or populations. 

• The null hypothesis says that the distribution of proportions 
for all categories is the same in each group or population. The 
alternative hypothesis says that the distributions differ. 

• To test our hypotheses, we select a random sample from each 
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population or subgroup independently. We gather data for one 
categorical variable. 

The Chi-Square Test Statistic and Distribution 

For all chi-square tests, the chi-square test statistic χ2 is the same. It 
measures how far the observed data are from the null hypothesis by 
comparing observed counts and expected counts. Expected counts 
are the counts we expect to see if the null hypothesis is true. 

The chi-square model is a family of curves that depend on degrees 
of freedom. For a one-way table the degrees of freedom equals (r – 
1). For a two-way table, the degrees of freedom equals (r – 1)(c – 1). 
All chi-square curves are skewed to the right with a mean equal to 
the degrees of freedom. 

A chi-square model is a good fit for the distribution of the chi-
square test statistic only if the following conditions are met: 

• The sample is randomly selected. 
• All expected counts are 5 or greater. 

If these conditions are met, we use the chi-square distribution to 
find the P-value. We use the same logic that we have used in all 
hypothesis tests to draw a conclusion based on the P-value. If the P-
value is at least as small as the significance level, we reject the null 
hypothesis and accept the alternative hypothesis. The P-value is the 
likelihood that results from random samples have a χ2 value equal to 
or greater than that calculated from the data if the null hypothesis 
is true. 
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207. StatTutor: Risk Factors 
for Low Birth Weight 

You are now ready to practice what you learned in this module by 
doing a StatTutor exercise. We design StatTutor exercises to help 
you apply what you have learned to a real life data analysis question. 

Instructions: One of the first few screens in StatTutor has a link 
to download the data set for this StatTutor exercise. When you click 
that link, a pop-up window will appear asking if you want to open 
or save the file. Make sure you click “Save,” which will allow you 
to save the file to your hard drive. Then find the downloaded file 
and double-click it to open it if you’re using R, Minitab, Excel, or 
StatCrunch, or transfer it to your calculator if you’re using the TI 
Calculator. 

An interactive or media element has been excluded from 

this version of the text. You can view it online here: 

https://library.achievingthedream.org/

herkimerstatisticssocsci/?p=233 
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208. Assignment: Test of 
Independence Using 
Technology 

 
The purpose of this activity is to gain experience conducting a 

chi-square test of independence using technology. 
Recall the report On the Front Line: The Work of First Responders 

in a Post-9/11 World. We will use data from this report to investigate 
the question: Are alcohol-related problems among New York 
firefighters associated with participation in the 9/11 rescue? 

Here again are our observed data: 

Question 1: 

State the appropriate hypotheses for the chi-square test for 
independence in this case. 

Now you will check whether the conditions for the chi-square 
test are met. In order to do this, you’ll need to first launch the 
actual research report and read the last paragraph on page iii of the 
introduction (starting with the “The study was fully funded…”) 
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Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 2: 

Does the data meet the conditions for the chi-square test? 

Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 3: 

State your conclusion in context. Also explain what the P-value 
means as a conditional probability based on the null hypothesis. 
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209. Assignment: Using 
Technology with Data to Run 
a Hypothesis Test 

 
The purpose of this activity is to give you guided practice in 

carrying out the two-sample t-test, and to show you how to use 
software to aid in the process. 

Background 

Do undergraduates sleep less than graduate students? A student 
conducted a study of sleep habits at a large state university. His 
hypothesis is that undergraduates will party more and sleep less 
than graduate students. He surveyed random samples of 75 
undergraduate students and 50 graduate students. Subjects 
reported the hours they sleep in a typical night. 

For this hypothesis test, he defined the population means as 
follows: 

• μ1 is the mean number of hours undergraduate students sleep 
in a typical night. 

• μ2 is the mean number of hours graduate students sleep in a 
typical night. 

Question 1: 

State the null and alternative hypotheses that are being tested here. 
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Question 2: 

Explain why we can safely use the two-sample T-test in this case. 
Comment: Before we move on to carry out the test, it is important 

to realize that in the two-sample problem, the data can be provided 
in three possible ways: 

(i) Sample data in one column, and another column that indicates 
which sample the observation belongs to. Recall that this is the way 
the data were given in our leading example (looks vs. personality 
score and gender): 

Note that essentially, one column contains the explanatory 
variable, and one contains the response. 

(ii) Sample data in different columns—data from each of the two 
samples appear in a column dedicated to that category. As you’ll see, 
this is the way the data are provided in this example: 

(iii) Summarized data—we are not given the actual data, but just 
the data summaries: sample sizes, sample means and sample 
standard deviations of both samples. Recall that in our second 
example, the data were given in this format. 
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Instructions 

Click on the link corresponding to your statistical package to see 
instructions for completing the activity, and then answer the 
questions below. 

R | StatCrunch | Minitab | Excel 2007 | TI Calculator 

Question 3: 

Carry out the test and report the test statistic and P-value. 

Question 4: 

Draw your conclusions in context. 
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210. Welcome to the class! 

This course will introduce you to the fascinating study of statistical 
analysis. As this course progresses you may develop a new way of 
thinking about the way things work – a perspective called “statistical 
thinking.” You will learn some new vocabulary, explore some new 
concepts, work a bit with numbers (data), and discuss what you are 
learning with your fellow students. Be prepared for a challenging 
and thought-provoking course. If you are the curious type, and if 
you like to think, I believe you will enjoy this course. 

The “Course Information” documents in this section provide 
syllabus information which describe the course requirements and 
policies. Read all of these documents carefully. If you have any 
questions, contact me in the “Talk With the Professor” forum and I 
will get right back to you with a clarification. After reading through 
all of the Course Information documents you should have a clear 
picture of my expectations for the course. Feel free to print any of 
the documents if you are more comfortable with hard copies. 

The course activities appear in the “Learning Modules” tab at 
the top of your screen. The Learning Modules contain the 
graded activities for the course. This is where you will “attend class” 
on a regular basis. You should logon and participate as often as you 
can. The Course Schedule document lists the start and end dates for 
the discussion forums and due dates for all assignments. 

Notice: If something in the course seems odd, or if you are not 
clear what you are expected to do, post a note in the Bulletin 
Board. 

http://onlinestatbook.com/2/ 
http://onlinestatbook.com/2/case_studies/case.html 
http://onlinestatbook.com/2/glossary/index.html 
http://onlinestatbook.com/2/calculators/calculators.html 
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211. Course Learning 
Activities 

Course Learning Activities: 

Homework Problems: There are assigned problems for each chapter. 

Discussion Forums: There is a discussion forum for each module.  This 

is the way you interact with the other students over the content of the 

textbook. 

Exams: There will ba an exam in each module. 

Reflective Blogs:  You are asked to write about and discuss the most 

important things that you are learning in each module, and the impact 

the knowledge you are learning will have on your values, attitudes, beliefs 

behavior and your career. 

Talk with the Professor: There is an ungraded “Talk with the 

Professor” Forum. In this area I may ask discussion questions about issues 

which I feel haven’t been fully explored in the chapter forums. Also, in 

this area you may ask me questions, which I will respond to. Most often, I 

expect these questions (mine and yours) will be related to the discussions 

or the textbook – but no relevant topic is “off-limits.” You should check 

this area each time you log on and participate in these discussion threads 

if and when they arise. 

Extra Credit / Make-up Work / Incomplete Grades: 

1. The requirements in this course require frequent participation and 

cooperation with the other students. There are no substitutes for 

these requirement, and I do not accept “extra credit” or “alternative 

credit” assignments. 

2. Also, there is no way to “go back” after a discussion forum or blog 

has ended to “make-up” missed discussion activity.  Posting to a 
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discussion forum that has ended is like talking in an empty classroom 

– there is no benefit to you or to the class. 

3. Finally, an incomplete in the course is not appropriate, as there is no 

way to complete the course once it has ended and all of the other 

students are gone. 
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212. How Your Course Grade 
is Determined 

 
How you are evaluated: 

 There are 30 graded activities in this course: 
 

Category 
Name 

Course 
Value 

Number of 
Assignments 

Homework 
Problems 25% 15 homework 

assignments 

Discussion 
Forums 25% 5 discussion 

forums 

Exams 25% 5 exams 

Reflective 
Blogs 25% 5 blogs 

 
Discussion Forum Grading Rubric: 

To earn an “A+” on a discussion forum, you must submit 10 
or more acceptable posts on 10 or more different days. 
What is an “Acceptable Post?” 

1. The subject (post title) must be a complete sentence 
which summarizes the main point of your post 
message. 
2. Your post message must provide new, accurate, and 
relevant information.  If your post is a question, it must 
be thoughtful and relevant. 

Course Final Grade Scale:  Here are the cutoffs for 
final course grades: 
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A+ = 97, A = 94, A- = 90 

B+ = 87, B = 84, B- = 80 

C+ = 77, C = 74, C- = 70 

D+ = 67, D = 64, D- = 60 

F = 0-59 

Grade Book: Online courses have special 
features that allow you to see your 
progress 24/7. Access is through the “MY 
Grades” link in the sidebar. 
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213. Heutagogical Course 
Objectives 

Heutagogical Course Objectives specific to Prof 
Pelz’ sections of this course: 

This course is designed to: 

1. develop proficiency in self-directed learning from the required 
textbook readings. 

2. develop the students’ capability for connecting discipline 
content to personal values and behavior. 

Assessment of Heutagogical Course Objectives: 

• Objective 1 is assessed via the textbook chapter discussions 
• Objective 2 is assessed via the Knowledge Audit Reflective 

Blogs 
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214. What is Heutagogy? 

What is “Heutagogy”? 
The foundation of my educational philosophy (and 

therefore the basis of my instructional design 
decisions for this course) is “Heutagogy”. Simply 
stated, it means that adults learn best when they 
have a lot of control over what they learn and how 
they learn it. In addition, heutagogy asserts that 
the assessment of adult learning should focus on 
what the learner believes she/he has learned and 
on the various ways that learning has impacted, or 
will impact her/his values, ideals, and behavior. 
(See this link for an excellent synopsis of 
heutagogy:  http://www.nssa.us/journals/
2007-28-1/2007-28-1-04.htm.  Additional 
resources relevant to the theoretical basis of 
heutagogy are available 
at http://www.technoheutagogy.com.)  

The learning objectives implicit in the 
heutagogical approach are different than those of 
traditional pedagogy and contemporary 
andragogy.  I have designed this course to create 
a learner directed learning environment that will 
expose each student to the generally accepted 
concepts, ideas, research methods and research 
findings which comprise the discipline of 
Psychology. In addition,  the design of this course 
will provide the opportunity for each student to 
identify and explore the discipline-specific topics 
and ideas from the textbook and from the World 
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Wide Web that she/he finds most important and 
relevant. 

I recognize that not all students have the same 
interests and motivations for taking this course. 
Hence, there are no content-specific learning 
goals that I have set. In contrast, each student 
decides which specific content topics to focus on 
and discuss.  A desired outcome of this learner-
directed learning environment is that each 
student will increase her/his capability to identify 
discipline-salient issues that are personally 
interesting and relevant and then orchestrate 
learning activities that result in cognitive growth 
and behavioral change. 

In short – each learner sets her/his own content-
specific learning objectives. This is the essence of 
a heutagogical design. 

My role in the course… 
The written assignments and discussion posts 

that you submit in this class are not for my 
benefit – they are for the benefit of you 
and the other students in the class. All of 
the course rules, policies, and requirements are 
designed to maximize the teaching / learning 
value of your coursework. 

My role in the course begins with the 
instructional design process – to create a 
sequence of learning activities that: 
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• engages each learner in a meaningful way 
with the course content and the other 
learners in the class. 

• requires each learner to also be a teacher – to 
add quality learning opportunities for the 
other students to benefit from. 

• allows maximum freedom for self-direction – 
so that each learner has the responsibility to 
forge her/his own learning path. 

The extent to which I am successful in achieving 
these three goals is the measure of my success in 
this course. 
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215. My Expectations... 

My Expectations 

The biggest difference between online courses and classroom 
courses is that Internet study is student-centered rather than 
teacher centered. This means that you – the student – are 
responsible for your own learning and success. If you are highly 
motivated, log on and participate frequently, and produce high 
quality work – you will be successful. However, if you log on 
sporadically, participate minimally, or submit poor quality work – 
you will not. Online higher education is aimed at independent 
learners. If you require the structure of a classroom, then online 
courses will not suit you. 

In this course, we read and discuss the entire text! If you do not 
read the text in advance of the discussions, your lack of knowledge 
will be obvious to me and to the other students. It is not uncommon 
in these courses for students to provide strong, public criticism of 
other students who “waste their time” with ill-informed posts. 

I expect the successful student to spend an average of 
about 120-150 total hours on this course. Although that may seem 
like a lot – remember this: A traditional classroom-based course is 
designed to require 45 hours of “seat time” plus 2-3 hours outside of 
class for each hour in class. It adds up to around 150 total hours. 

Do you have a plan if you have a technical problem? If your 
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computer crashes, or if your Internet connection fails – these 
events do not excuse you from your course responsibilities.You can 
access this online course from any computer that has an Internet 
connection. I suggest that you make a plan now for events such 
as these. If you ever have a technical problem connecting to your 
course, submitting work to your course, or any other course-related 
issue, call the SLN Student Helpdesk at (800) 875-6269. If the 
problem is with the SLN system, you will be granted a time 
extension for submitting assignments affected by the problem. 
However, if you do not report the problem to SLN, no time 
extension will be granted. 

Final note: You are responsible for keeping up with the 
requirements of this course. If you do not logon regularly, submit 
your assignments and discussion posts in a timely fashion, and 
follow the rules I have posted, it is very likely you will not succeed. 
However, I will not withdraw you from this course. If you decide not 
to finish for any reason, you must contact the Registrar’s Office and 
officially withdraw yourself. If you just stop participating, you will 
receive the final course grade of “F”. 
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216. Module 1 Learning 
Activities 

1. Read Chapters 1, 2 and 3 in the Open Statistics Education 
textbook.  (go to the online textbook for interactives and 
videos.) 

2. Read Chapters 1 and 2 in the SftSS textbook and complete all 
exercises. 

3. Participate in the discussion forum 
4. Submit the homework assignment 
5. Submit the exam 
6. Complete the Reflective Blog activities. 
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217. Module 1 Discussion 
Forum 

Use this forum to: 

• discuss the textbooks 
• ask for assistance from your classmates 
• introduce Internet resources you find helpful 
• discuss any relevant issues 

It is important – and required – that you interact with the other 
students in this class. 
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218. Reflective Blog 1 

Reflect upon what you have learned in this module, and how you 
might use this knowledge in your day-to-day activities and/or in 
your career.  Minimum requirement: 1000 original words. 
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219. Blog 1 Forum 

Post your Reflective Blog here, then respond to 5 other blogs. 
 Minimum requirement:  200 original words per reply. 
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220. Module 1 Homework 

Select 10 questions from the “Exercises” section of each chapter in 
the Online Statistics Education textbook.  Do not select questions 
for which answers have been provided.  Create a Word document 
(or use whatever word processing program you like) showing how 
you worked out the problems and submit it as a file 
attachment by the last day of the module. 
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PART XIV 

MODULES 2, 3, 4 AND 5 

All 5 modules conform to the same sequence of learning activities. 
Students are presented with a reading assignment from each of 
the 2 OER textbooks, they discuss the content of the reading in 
a learner-facilitated forum, complete an assignment by selecting 
problems from the textbook, write a blog on what they have learned 
of significance and how they might apply it, reply to several other 
blogs, and take a self-constructed exam to demonstrate their 
knowledge. 

Modules 2, 3, 4 and 5  |  1235





221. Structure of Modules 2 
through 5 

All modules folow the same structure and have the same learning 
activities and instructions as Module 1: 

• Module Learning Activities – a list of required readings and 
graded assignments 

• Folders for the textbook chapters 

◦ Online Statistics Education 
◦ Statistics for the Social Sciences 

• Module discussion forum 
• Reflective Blog written assignment 
• Reflective Blog forum 
• Module Homework assignment 
• Module exam 
• Talk with the Professor forum 

 

Structure of Modules 2 through
5  |  1237
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