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WELCOME 

Welcome to Informal Calculus! This book came from teaching Survey of Calculus at the University of 

Montana Western. You’ll find that this book reflects the needs of that course, which are: 

• Intuition behind the main concepts of calculus, 

• Short, to-the-point explanations about how to do calculations, 

• Build-in review for algebra along the way, with trigonometry not being a pre-requisite 

• Applications to biology and environmental science, the two main science majors at my 

university. 

A huge thanks to my collaborators for this project: Michelle Anderson who helped with biology ideas, 

problems, and projects; Rebekah Levine, who assisted with environmental science ideas, problems, 

and projects; and Debbie Seacrest, who advised on mathematical content and edited the entire book. 

This work was partially supported by a grant from TRAILS Montana. Thanks to Christina Trunnell 

for helping with many aspects of this book directly, as well as supporting OER projects all over 

Montana. 

Click on “contents” to start exploring the book. I hope you enjoy the book. 

FOR TEACHERS 

Feel free to take, change, modify any materials from this book for your own class or other use. If your 

particularly interested in project ideas, I’ve collected links to the projects in this book below: 

• Ball toss 

• Hard Derivatives 

• Killdeer Migration 

• Modelling with Differential Equations 

• Measuring Streamflow 

• Quake Lake 

https://trailsmt.org/
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PART I 

ALGEBRA TIPS AND TRICKS: PART I 





CHAPTER 1 

ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS TRICKS PART PART I I (COMBINING (COMBINING TERMS, TERMS, 
DISTRIBUTING, DISTRIBUTING, FUNCTIONS, FUNCTIONS, GRAPHING) GRAPHING) 

H 
ere are a few algebra tips and tricks to get you started. In later chapters, we will have some 

“just-in-time” algebra review, so you’ll review an algebra concept just before you need it. 

COMBINING LIKE TERMS 

A term is one or more things multiplied together: for example,  is a term since it is  times  times 

,  is a term, since it is  times  and  is a term. If there is also a number multiplied in front of a 

term, that is called the coefficient (if no coefficient is present, the coefficient is ). Two terms are like 

terms if they have the same variables multiplied (but may have different coefficients). If two like terms 

are added together, they can be combined into one term by adding the coefficients. 

Problem Combine like terms: . 

\begin{align*} 

ab – a^2 + 2ab – 3a^2 & = 1ab + (-1)a^2 + 2ab + (-3)a^2 \qquad \text{(Clarify coefficients)} \\ 

& = 1ab + 2ab + (-1)a^2 + (-3)a^2 \qquad \text{(Group like terms)} \\ 

& = (1+2)ab + (-1+-3)a^2 \qquad \text{(Add coefficients)} \\ 

& = \boxed{3ab – 4a^2} 

\end{align*} 

DISTRIBUTING 

If you are multiplying by a sum in parentheses, the rule is to distribute 

Here is another version in “table” form. 

It works, check it out: \begin{align*} 

3(4 + 5) & = 3(4) + 3(5) \\ 

3(9) & = 12 + 15 \\ 

27 & = 27 

\end{align*} 



Here is an example: 

 

Problem Distribute and combine like terms: . 

\begin{align*} 

3a(2a – b) – (b-a^2) & = 3a(2a – b) + -1(b – a^2) \\ 

& = 6a^2 – 3ab – b + a^2 \qquad \text{(Notice the $\mathbf{+a^2}$)}\\ & = \boxed{7a^2 – 3ab – b} 

\end{align*} 

FOILING 

When multiplying two sums, every term of the first must be multiplied by every term of the second. 

Thus, if there are two terms in the first sum and two in the second, there are four total terms in the 

product: the (f)irst two terms, the (o)utside terms, the (i)nside terms, and the (l)ast two terms. We can 

use the acronym “foil”: 

Here is the same calculation in table form: 

Here is an example: 

 

Problem Foil: . 

\begin{align*} 

(3a + 4b)(a^2 – ab) & = (3a)(a^2) + (3a)(-ab) + (4b)(a^2) + (4b)(-ab) \\ 

& = 3a^3 – 3a^2b +4a^2b – 4ab^2 \\ 

& = \boxed{3a^3 + a^2b – 4ab^2} \end{align*} 

DISTRIBUTING WITH THREE TERMS 

When you have three expressions multiplied together, things get a bit trickier. Let’s do some examples. 

 

Problem Find . 

To do this, we first multiply the . This is . We 

then multiply . This is done by combining every term in the first product with 

every term in the last product. One way to do this is  times everything in , plus  times 

8 TYLER  SEACREST



everything in . 

\begin{align*} 

(x – 2)(x + 1)(x + 3) & = (x^2 – x – 2)(x + 3) \\ 

& = (x^2 – x – 2)(x) + (x^2 – x – 2)(3) \\ 

& = x^3 – x^2 – 2x + 3x^2 – 3x – 6 \\ 

& = \boxed{x^3 + 2x^2 – 5x – 6} 

\end{align*} 

There you go. 

Alternatively, we can use the table method. We start by foiling two of the terms together 

Adding the blue terms, we get an intermediate answer of . Now we can multiply this 

by . 

Combining like terms gives the answer , the same answer we got before! 

 

Problem Find . 

We see this is the same thing as . We then can do 

\begin{align*} 

(x + 4)(x + 4)(x + 4) & = (x^2 + 8x + 16)(x + 4) \\ 

& = (x^2 + 8x + 16)(x) + (x^2 + 8x + 16)(4) \\ 

& = x^3 + 8x^2 + 16x + 4x^2 + 32x + 64 \\ 

& = \boxed{x^3 + 12x^2 + 48x + 64} 

\end{align*} 

I won’t do it this time, but you could use the table method if you prefer that! 

 

FUNCTIONS 

A function is anything that produces an output for every possible input. So for example, 

is the function that take in an input , and outputs double  (i.e. , , , 

etc.). 

Here are some examples: 
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Problem If , find  and . 

We see that , and . 

 

Problem If , find , , and . 

In each case, just replace the  with the input to the function. For example, 

, and . 

A tricky one is . Here, we replace the  with  in the formula. 

Tip: Always do substitutions or replacements like this in parentheses to keep it all together. 

Here is what it would look like: 

\begin{align*} 

h({\color{red} x}) & = 2{\color{red} x} + 3 \\ 

h({\color{blue} x+1}) & = 2{\color{blue} (x+1)} + 3 \\ 

& = 2x + 2 + 3 \\ 

& = \boxed{2x+5}. 

\end{align*} 

 

Problem If , find . 

We have to replace the  with  in the formula. So we have 

\begin{align*} 

m(x) & = 3x – 1 \\ 

m(4x+1) & = 3(4x+1) – 1 \\ 

& = 12x + 3 – 1 \\ 

& = \boxed{12x + 2}. 

\end{align*} 

 

Problem If  and , what is ? 

Here, the idea is to replace  with  in the formula. In other words,  becomes : 

\begin{align*} 

f(x) & = x^2 – 4x \\ 

f(g(x)) = f(2x+5) & = (2x+5)^2 – 4(2x+5) \\ 

& = 4x^2 + 10x + 10x + 25 – 8x – 20 \\ 
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& = \boxed{4x^2 + 12x + 5}. 

\end{align*} 

GRAPHING FUNCTIONS 

Graphing is a great way to visualize a function. For example, consider the graph of . 

Choose any point on the curve. If you go down to the -axis, you’ll get the input value, and if you 

go directly left (or right) to the -axis, you’ll get the output value. For example, 

INFORMAL  CALCULUS 11
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input

output

This reflects the fact that . 

Note: Anything with multiple outputs for one input is considered not a function. A handy way to 

determine this is the “vertical line test” — any vertical line should hit a function only once. 

Function Not

hits once
hits more
than once

TABLE METHOD FOR GRAPHING 

If you want to graph a function by hand, a way that works for virtually any function is the table 

method. Say we want to do the following: 

Problem Graph  using the table method. 

We can just start by plugging in some values like , , , etc., and fill out a whole 

table. For example, for , we can compute . Since 

, we know that the point  lies on the graph. Filling out the rest of the 

table, we get 

$$ 

12 TYLER  SEACREST
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\begin{array}{cccc} 

\mathbf{x} & \mathbf{x^2 + 2x} & \mathbf{g(x)} & \mathbf{(x, y)} \\ 

-2 & (-2)^2 + 2(-2) & 0 & (-2, 0) \\ 

-1 & (-1)^2 + 2(-1) & -1 & (-1, -1) \\ 

0 & (0)^2 + 2(0) & 0 & (0, 0) \\ 

1 & (1)^2 + 2(1) & 3 & (1, 3) \\ 

2 & (2)^2 + 2(2) & 8 & (2, 8) 

\end{array} 

$$ 

We can then plot these input-output pairs on the graph, and they trace out a curve. (Note that the 

pair  didn’t fit on the graph.) 

(-2, 0)

(-1, -1)

(0, 0)

(1, 3)

INFORMAL  CALCULUS 13
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CHAPTER 2 

HOMEWORK HOMEWORK FOR FOR ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS: TRICKS: PART PART I I 

1. Simplify the following algebraic expressions. 

a. 

ans 

b. 

ans 

c. 

ans 

2. Simplify the following. 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 



3. Given the functions  and , find the following. 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 

4. Sketch graphs of , , and . (if you don’t know what it looks like, use a calculator or 

look up the answer on the internet). 

5. For the following graph, imagine that it represents the amount of money in Rebecca’s bank 

account. Create a story that explains the various ups and downs. 

Answers vary. Here is one possibility (please don’t use this, come up with your own!): 

Rebecca is a money counterfeiter. Business is booming in the 1990s, and she makes (literally) 

a boat load of cash, launders it, and makes bank. However, the Feds in the 2000s came out 

with these new benjamins with watermarks and stuff like that, and she can’t counterfeit it 

anymore. She loses all her money gambling on water polo. She tries to get her business back 

a couple times, but it never catches on. Finally, she decides to invest in bitcoin when it was 

trading at $1 USD per bitcoin, and then she made a serious fortune. 

ans 
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6.  in Celsius is  in Fahrenheit, and  in Celsius is  in Fahrenheit. 

a. Sketch a graph with Fahrenheit along the -axis and Celsius along the -axis. Hint: 

I’d start with the points  and , and connect them with a straight 

line. 

b. What is the slope of the graph from part (a)? 

c. What is a formula to convert from Fahrenheit to Celsius? 

7. For each graph below, state whether it is a function or not. (This involves using the “Vertical 

Line Test”) 

a)
b)

c) d)

A and C are functions, B and D are not. 

ans 

8. Let . 

a. Find the slope of a line that goes through the points  and , both of 

which lie on the graph of . 

Slope is 

ans 

b. Consider the function . Find the slope of a line that intersects 

this curve at  and . 

Slope is 

ans 
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PART II 

DERIVATIVE INTRODUCTION 





CHAPTER 3 

BALL BALL TOSS TOSS PROJECT PROJECT 

P P 
urpose of the project: get familiar with the idea of creating a velocity function based on 

position data 

Above are frames from a video of a simple ball toss. Every other frame from the 30 frames per 

second video is shown, so the time between the frames is approximately  of a second. 

1. Fill in the position data for each time in the table below. Velocity is usually defined as 

. How could you calculate velocities for each data point? Fill these in as well. 



Time (s) Position (cm) Velocity (cm/s) 

2. Create two graphs, either by hand or with graphing software: position versus time, and 

velocity versus time. In each case, time is the -axis, while the -axis is position in the first 

graph and velocity in the second graph. How are the two graphs related? 

Going from a position graph to a velocity graph like this is called a derivative, which we’ll talk 

a lot more about in upcoming chapters. 

3. While your velocity graph is probably not a perfect line, imagine that it is linear for a second. 

What is the slope of the velocity graph? This is the rate of acceleration due to gravity, an 

important quantity in physics. 
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CHAPTER 4 

POSITION POSITION TO TO VELOCITY VELOCITY 

T 
he idea of position of an object versus the velocity of an object encompasses all the big ideas of 

calculus. So that’s where we’ll start! 

HEADING TO A LAKE 

Problem Suppose you’re given a graph of your distance from home during a trip to the lake. It 

might look something like this: 

Time (hours)

Distance
from
home
(miles)

2

0.5 1 1.5

POSITION GRAPH

This graph might represent you walking to a lake two miles away, hanging out for half an hour, 

then walking home. The first part of the graph that slants upwards represents your walk to 

the lake, since your distance from home is increasing (higher on the graph). The second part 

of the graph represents you hanging out at the lake. It’s flat since your distance from home is 

not changing. Finally, the part of the graph that slants down represents you walking home. Your 

distance to home is decreasing, so the line goes down on the graph. 

Now here is the question: what is your velocity during this journey? 

Velocity is a measure of speed, and essentially boils down to this equation: 

While you’re walking to the lake, you’re traveling at a rate of 2 miles every half hour (your change in 



distance is two, during the half hour change in time). Therefore your velocity is . We can simplify 

this fraction by multiplying top and bottom by , and we see 

So you were walking at 4 miles per hour to the lake. This velocity doesn’t change as you walk 

to the lake, and so we call this a constant velocity. Graphically, we represent constant velocity with a 

horizontal line: 

Time (hours)

Velocity
(miles per
hour)

4

0.5 1 1.5

VELOCITY GRAPH

While at the lake, your position is not really changing ’cause you’re just hanging out. So your velocity 

is zero. To relate this back to the formula, your change of distance is zero while your change in time 

is . So by the formula we have 

but we didn’t really need to do the formula since we knew we weren’t going anywhere. Graphically, 

a velocity of zero looks like this: 

Time (hours)

Velocity
(miles per
hour)

4

0.5 1 1.5

VELOCITY GRAPH

-4
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Finally, while coming back home, again we have a change in distance of  miles over a half an hour. 

So you might think the velocity is  again, but it is actually very natural to call this a negative velocity, 

since the distance is going down. So we say that the change in distance is actually , and therefore: 

Graphically: 

Time (hours)

Velocity
(miles per
hour)

4

0.5 1 1.5

VELOCITY GRAPH

-4

Okay, now let’s look at the position and velocity graphs together. I’ll color each segment to emphasize 

how the different parts correspond. 

Time (hours)

Distance
from
home
(miles)

2

0.5 1 1.5

POSITION GRAPH
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Time (hours)

Velocity
(miles per
hour)

4

0.5 1 1.5

VELOCITY GRAPH

-4

SLOPE 

Another way to think of velocity is that it is the same as the slope of a line. Recall that the slope of a 

line is a measure of how steep the line is, and the formula follows the phrase “rise over run”. Let’s look 

again at the position and velocity graphs from the last subsection: 

Time (hours)

Distance
from
home
(miles)

2

0.5 1 1.5

POSITION GRAPH

Time (hours)

Velocity
(miles per
hour)

4

0.5 1 1.5

VELOCITY GRAPH

-4

What is the slope of the red line? Well, rise over run would be , which is . That’s the same as 
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the velocity graph! Same thing for the green line: it has a slope of zero, and the velocity graph is at 

zero. Finally, the slope of the blue line is  which is , and that is what we have for the velocity 

graph. 

So “slope” and “velocity” are the same thing. But there is another name for this concept that we will 

use a lot: derivative. Derivative, slope, and velocity all mean the same thing. 

OTHER EXAMPLES OF DERIVATIVES 

Let’s see some other examples. Note for each of these, the position graphs is always piecewise linear, or 

made up of line segments. This makes it easier to find the velocity, or slope. 

Example Position to Velocity 

Problem Find the velocity graph (i.e. the derivative) corresponding to the following position 

graph. 

20

40

60

5 10 15

POSITION

m
et

er
s

seconds

To solve this problem, we need to find the velocity, or slope, of each of the lines in the graph. 

The first line has a change of distance of , and a change of time of  seconds, so the velocity is 

. Next, the we have a negative change of distance of  since the graph goes from 

 to . This also occurs over  seconds, so the velocity is . Finally, we gain a 

distance of  in the final line over five seconds, so the velocity is . 
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20

40

60

5 10 15

POSITION

m
et

er
s

seconds

slope = 12
slope = -8

slope = 4

If we graph these velocities, we have 

-8

4

12

5 10 15

VELOCITY

m
et

er
s/

se
c

seconds

INTEGRALS 

We can also go in the reverse direction: take a velocity graph, and create a position graph. This is called 

integration or taking an integral. This can be tricky but we can do it at this point if the function is what 

is called a step function, which is basically a function consisting of a bunch of flat parts. 

Example Integration 

Problem Given the following velocity graph, create a position graph. 
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Time (hours)

Velocity
(miles per
hour)

10

3 6 9

VELOCITY GRAPH

-10

5

-5

Given these velocities, we want to graph where the person travels, and the person can start 

wherever we want. For convenience we will start the person at location zero. If we focus on the 

first section, we see the person is traveling at 5 miles per hour for three hours. This corresponds 

to the person traveling  miles total during the first three hours. It would look something like 

this: 

Time (hours)

Position
(miles)

15

3 6 9

POSITION GRAPH

-15

-30

Notice how the position goes from  to . From  to , the person moves at  miles per hour 

for  hours: this would be a total of  miles traveled. Since the person is already at position 

, they’ll end up at position . 
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Time (hours)

Position
(miles)

15

3 6 9

POSITION GRAPH

-15

-30

From  to , the person moves at  miles per hour for  hours, which is another  miles 

covered. Starting from position  and adding another , the person will end up at . 

Time (hours)

Position
(miles)

15

3 6 9

POSITION GRAPH

-15

-30

Finally, here are colored versions of the velocity and position maps. 
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Time (hours)

Position
(miles)

15

3 6 9

POSITION GRAPH

-15

-30

Time (hours)

Velocity
(miles per
hour)

10

3 6 9

VELOCITY GRAPH

-10

5

-5

Going from velocity back to position is called an integral. Here is another example. 

Example Integration 

Problem Given the following velocity graph, create the position graph. 

velocity
(mph)

time (hr)

12

4

-5

3 7 9
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To find out the position, note that we use multiplication. For example, in the first 3 hours, they 

move at 4 miles per hour, so we multiply:  miles. In the next  hour stretch, we’re 

at  mph, so we multiply . The last bit is two hours long at 12 mph, so we 

multiply . Note that we ALSO multiply when we find area, so we can think of these 

calculations (velocity to position) as area calculations: 

velocity
(mph)

time (hr)

12

4

-5

3 7 9

area 12

area -20

area 24

So we basically make jumps of , , and  as shown: 

Position
(miles)

time (hr)

3 7 9

-8

12

16

INCREASING AND DECREASING 

The following graphs are not made up of straight lines — but we can still tell if the derivative is 

positive or negative. A positive derivative means a quantity is increasing — and graphically that is 

represented by a graph the climbs as you go from left to right. A negative derivative means a quantity is 

getting smaller — graphically going downward from left to right. 

Problem Which of the following have positive derivatives? Which have negative derivatives? 
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(a) (b) 

(c) (d) 

That’s right: (a) and (b) have a negative derivatives, and (c) and (d) have positive derivatives. 
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CHAPTER 5 

HOMEWORK: HOMEWORK: POSITION POSITION TO TO VELOCITY VELOCITY 

1. For each position graph, sketch the velocity graph. (This process is known as “taking the 

derivative”.) 

a. 

Time (hours)

40

2 4 6

P
os

iti
on

 (
m

ile
s)

20

b. 

Time (hours)
10

5 10 15

P
os

iti
on

 (
m

ile
s)

-45

c. 

Time (hours)

5

-6 3 6

P
os

iti
on

 (
m

ile
s)

-10

-3



d. 

Time (hours)

14

2 6 9

P
os

iti
on

 (
m

ile
s)

7

2. For each velocity graph, sketch the position graph. (This process is known as “integrating”.) 

a. 

Time (hours)

6

0.5 1 1.5

-6

V
el

oc
ity

 (
m

ile
s 

pe
r 

ho
ur

)

b. 

Time (hours)

12

3 6 9

3

V
el

oc
ity

 (
m

ile
s 

pe
r 

ho
ur

)

c. 

Time (hours)

40

-2 2 4

V
el

oc
ity

 (
m

ile
s 

pe
r 

ho
ur

)

-30

20
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d. 

Time (hours)

40

-2 2 4

V
el

oc
ity

 (
m

ile
s 

pe
r 

ho
ur

)

-30

20

3. The Consumer Price Index (CPI) is a number that correlates to how expensive it is to buy 

things. Suppose the CPI is increasing. Circle one of the bold choices for each problem. 

a. The CPI has positive or negative derivative. 

b. The CPI has positive or negative slope. 

c. Using the CPI as an indicator, consumer prices were higher or lower yesterday. 

d. Using the CPI as an indicator, consumer prices will be higher or lower tomorrow. 

Positive, positive, lower, higher 

ans 

4. The Beaverhead River Flow Rate (BRFR) measures how much water is flowing in the 

Beaverhead river. Suppose the BRFR has negative slope. Circle one of the bold choices for 

each problem. 

a. The BRFR has positive or negative derivative. 

b. The BRFR is increasing or decreasing. 

c. There will be more water or less water flowing in the river tomorrow. 

d. There was more water or less water flowing in the river yesterday. 

negative, decreasing, less water, more water 

ans 

5. The temperature of a chemical sample has a negative derivative. Circle one of the following 

bold options. 

Initially the sample was at room temperature. Then the sample was put in an oven or 

refrigerator. 

Refrigerator 

ans 

6. Acceleration is the measure of how quickly the velocity is changing. Suppose the velocity of 

a car is positive, but the acceleration is negative. Circle the bold option in each case. 

a. The position of the car is increasing or decreasing. 

b. The velocity of the car is increasing or decreasing. 

c. If the current trends continue, in five seconds the car will have a greater or smaller 

position number. 

d. If the current trends have held true for the last five seconds, five seconds ago the car 

was going faster or slower. 

INFORMAL  CALCULUS 37



Increasing, decreasing, greater, faster 

ans 

7. For each situation, try to sketch a picture of a graph matching the description. 

a. A graph with negative values (when I say values, I mean -values!). 

b. A graph with a positive derivative (when I say derivative, think slope!) 

c. A graph with negative derivative. 

d. A graph with positive derivative but negative values. 

e. A graph with negative acceleration. 

f. A graph with negative acceleration but positive derivative. 

38 TYLER  SEACREST



CHAPTER 6 

ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS TRICKS PART PART II II (PIECEWISE (PIECEWISE DEFINED DEFINED 
FUNCTIONS) FUNCTIONS) 

PIECEWISE DEFINED FUNCTIONS 

Problem Graph the following function 

H ow do you do it? Well, you have to graph two different lines:  and 

: 

https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/pgf8.svg


But then you need to “cut off” the graph of  after , and “cut off” the graph of  before 

: 

That’s the graph of ! It is called a piecewise defined function. Since each piece is linear, sometimes 

it is called a piecewise linear function. 

There is one more detail to clear up. What is the value of the function at ? 

Well, going back to the original function, we see that  was defined as  for , and this 

includes . So we should use the blue line to determine the y-coordinate for . To indicate 

this on the graph, a filled in dot can be added to the blue graph (indicating the endpoint is included), 

and an open or not-filled-in dot is added to the green graph (to indicate the endpoint is not included). 
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CHAPTER 7 

LIMITS LIMITS 

I 
n Section 1A, we saw how to go from a position graph to a velocity graph. However, the graphs we 

were dealing with were piecewise linear, which made it very easy to find the velocities, or the 

slopes. If the position graphs are not piecewise linear, it is more difficult to find the slope at a given 

point on the graph. 

There is a very nice way of doing this for many functions, but if we’re not careful, it will require 

division by zero! What does being careful entail? It means knowing your limits! 

NUMERICAL LIMITS 

Suppose you wanted to evaluate the function  at . Plugging in  into the 

 formula gives 

But there is a problem — we’ve divided by zero. 

(image credit: Jaggery) 

Hopefully you didn’t actually do the division by zero. What can we do instead? Let’s make a table to 

see what happens when we get close to putting in two, without actually doing it. 



x f(x) 

1.5 9.25 

1.9 11.41 

1.99 11.9401 

1.999 11.994 

1.9999 11.9994 

2.0001 12.0006 

2.001 12.006 

2.01 12.0601 

2.1 12.61 

2.5 15.25 

If you look at the table, it looks like  SHOULD be equal to  at . We can’t plug in 

because of division by zero, but it really should be  if it has a value. Can we just say it’s 12 and call 

it a day? Well, not quite, since we want to distinguish between functions that are actually equal to 12, 

and ones that just should be. That’s where limits come in. 

We say  is undefined, but we can write , which we read as “the limit of  of 

as  approaches two is twelve”. That example is the idea behind a limit. 

More technically, a limit is a value  the -value of a function  approaches as the -value 

approaches a certain value , either from the right, the left or both. Notationally,  is 

the left hand limit,  is the right hand limit, and  is the two-sided limit. 

Let’s look at some pictures to make this more intuitive. 

GRAPHICAL LIMITS 

Consider the following . 

1 2 3

4

8

12

x-axis

y-
ax

is
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To find the value of a function, recall that you look at how high that function is at a given  value. For 

example,  is about , and  is about . 

1 2 3

4

8

12

x-axis
y-

ax
is

2

10

What’s happening at , or ? The filled-in circle shows the function value. The white circle 

indicates that value is not part of the function. So . 

1 2 3

4

8

12

x-axis

y-
ax

is

However, there is something funny going on at . Namely, the function seems to “jump from 

, stop at  momentarily, then finally jump to  and continue. This is called a discontinuity, and is 

usually a bad thing, or at least something that can be hard to deal with. This is where limits can be 

helpful. The notation  indicates the -value of the function as  approaches the value of 

from the left. Here is the picture: 
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1 2 3

4

8

12

x-axis

y-
ax

is
In other words,  is the value that  should be at , if you were approaching from the 

left. In this case,  should be 4 if everything were right in the world. Therefore, . 

The limit allows us to fill in what the function should be, even though it isn’t the case. 

The right handed limit  is the same way, but it approaches from the right. 

1 2 3

4

8

12

x-axis

y-
ax

is

Here, the function approaches  as we approach  from the right, and therefore we write 

. 

A two-sided limit exists if . In other words, if the left and right limits are 

the same. The notation for this is . Since the left and right limits are different, so we just 

write “Does Not Exist” or “DNE”. So . 

OTHER EXAMPLES 

Problem 
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For each value of , find , , , . 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

x-axis

y-
ax

is

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

1

2

3

4

5

-1

-2

1. We are looking at the function at . The actual value here is . However, 

the value it should be if we were coming at  from the left is , so . 

Coming from the right, it should be , so . Finally, , 

since the left and right limits are not equal. 

2. We are looking at the function at . We have , since that’s where the 

black dot is. But the value SHOULD be , whether we approach from the right or left. So 

. Since the left and right limits are equal, we have 

. 

3. We have , , , and . 
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4. Everything is nice and happy — there are no discontinuities here. Therefore 

. 

5. We have what is called a vertical asymptote, and the function basically goes off infinitely far 

in both directions. Here, we say , since there is no obvious value to make 

 equal to. We say , since it goes up infinitely high (the  symbol 

means “infinity”). Likewise, , since it goes down infinitely low. 

Therefore, we can see  does not exist. 

6. We have , , , and . 

7. We have . What we are asking here is what happens to  as  gets really big. In 

other words, what happens to the function as  goes to infinity? Well, it looks like perhaps 

 is just heading towards zero. So we say . There is no such thing as a 

right hand or two-sided limit in this case, nor does it make sense to talk about . So we 

just leave it as . This is the same thing as a horizontal asymptote. 

8. Similarly we are looking at what happens to  when  goes more and more negative. It 

looks like maybe  is heading towards , so we write . 
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CHAPTER 8 

HOMEWORK: HOMEWORK: LIMITS LIMITS 

1. Graph each piecewise defined function. 

a. 

b. 

2. Why is the following not a function? 

FUNDAMENTALS 

3. 

Continuous Not Continuous

If , then we say that  is continuous at point . In general, there is 

a simpler way to think about continuity: if a section of a graph of a function can be drawn 

without lifting your pencil, then that part of the function is continuous. If you need to lift your 

https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/continuous-v-not.svg


pencil at some point, that point is called a discontinuity. If the whole function is continuous 

everywhere, then the function itself is called continuous. 

For each function below, label it as continuous or not continuous. If it is not continuous, 

list at least one discontinuity. 

a. . 

Continuous 

ans 

b. The piecewise linear function  defined by 

Discontinuous at . 

ans 

c. The piecewise linear function  defined by 

Continuous 

ans 

d. The piecewise linear function  defined by 

Discontinuity at 

ans 

e. Your age in years as a whole number as a function of time. 

Discontinuous at every birthday 

ans 

f. The height of a tennis ball as a function of time. 

Continuous 

ans 

4. In this exercise, we will compute  using a calculator. 

a. Fill in the following table of values. 
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b. What does  seem to equal? 

ans 

c. Use a graphing calculator or computer to graph . Looking at the graph, 

what does it look like  is equal to when ? 

Loooooks like . 

ans 

5. Compute the following limits using a calculator like in problem (4). In each case, sketch a 

graph and jot down a table of values. 

a. 

ans 

b. 

ans 

6. Watch the following KhanAcademy video link: One Sided Limits from Graphs 

7. Find the following values given the graph of  below. 
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x-axis

y-
ax

is

-7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7

1
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a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 

f. 

ans 

g. 

ans 

h. 

ans 

i. 
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ans 

j. 

DNE (or ) 

ans 

k. 

DNE (or ) 

ans 

l. 

DNE 

ans 

m. 

ans 

n. 

ans 

o. 

ans 

p. 

ans 

q. 

ans 

r. 

ans 

s. 

ans 

t. 
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ans 

8. From  from Problem 7, list whether  is continuous or not continuous at the 

following values of : , , , , , . 

Only continuous at 

ans 

9. Watch the following KhanAcademy video link: 

Two-sided limit from graph 

10. Compute (as close as you can tell from the graph) the limit or function value in each case. If 

the limit does not exist, explain why. 

a. 

ans 

b. 

ans 

c. 

Does not exist 

ans 

d. 

1 

ans 

e. 
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ans 

f. 

2 

ans 

11. Is it possible that  but ? If so, sketch a picture of the graph of such 

an  If not, explain why not. 

Yes, it is possible. 

ans 

12. Is it possible that  but  If so, sketch a picture of the graph 

of such an  If not, explain why not. 

13. Suppose . 

a. What does  approach as  approaches ? 

ans 

b. What is 

Unknown 

ans 

c. What does  approach if  is approaching ? 

 but also perhaps other values 

ans 

14. Suppose . 

a. Estimate . 

It’s probably close to 

ans 

b. Is is possible ? Why or why not? 

This is possible but unlikely. There is nothing in the definition of limit that says 

 can’t equal  if the limit as  is . 

ans 

15. For each part, sketch a graph of what  might look like. Each problem is separate and 

will probably require a different graph. 

a.  and . 

INFORMAL  CALCULUS 55



b.  does not exist. 

c.  and . 

d.  and . 
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CHAPTER 9 

ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS TRICKS PART PART III III (FACTORING) (FACTORING) 

FACTORING 

W 
hen factoring an expression like this: 

The goal is to write this like  for some numbers  and , where  and 

could be positive, negative, or zero. Since  we see we 

need  and . That way, when you foil it back out, you have . We 

see if  and , this works for both  and . Thus, 

Let’s do a couple more examples. 

• Problem Factor . 

In this case we want  and .  and  works, so 

. 

• Problem Factor . 

This is a bit harder because the numbers are bigger, but we can still do it. We want 

, and . We can see that  is  times . So if we have  and , then 

 and . Hence . 

• Problem Factor . 

In this case, we want  and . But notice that this means , and 



hence , which means . That means , so  (or vice versa). 

Hence . 
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CHAPTER 10 

ALGEBRAIC ALGEBRAIC LIMITS LIMITS 

A 
lot of times you don’t need to look at a graph or make a table to find a limit. Consider the 

following: 

Problem Find . 

For this problem, we could make a table, or look at a graph, but  is such a nice function that 

there really isn’t any point in doing all that. Everything is happy at , so we can just plug in that 

value. 

\begin{align*} 

\lim_{x \to 3} 2x + 1 = 2(3) + 1 = 7. 

\end{align*} 

In fact, any polynomial, logarithmic, or exponential function that you might run into is what is called 

continuous. Continuous means that the limit is what you get if you just plug the value into the function. 

So why bother with limits? Well, there are some functions that are not continuous, such as rational 

functions. And rational functions are exactly what crop up when taking derivatives. Consider this 

example: 

Problem Find . 

Look at what happens when you plug in . 

\begin{align*} 

\lim_{x \to 3} \frac{x^2 – 2x – 3}{x – 3} & =^? \frac{(3)^2 – 2(3) – 3}{(3) – 3} \\ 

& = \frac{0}{0}. 

\end{align*} 

This is the same problem we saw in the numerical limits section. The fraction  is called the 

indeterminate case. Here is where a graph or a table might be useful. 



x f(x) 

2.5 3.5 

2.9 3.9 

2.99 3.99 

2.999 3.999 

2.9999 3.9999 

3.0001 4.0001 

3.001 4.001 

3.01 4.01 

3.1 4.1 

3.5 4.5 

Looks like the limit should be equal to . 

But there is algebraic way. Just remember this: factor the top, and cancel like terms. Let’s see it in 

action. 

\begin{align*} 

\lim_{x \to 3} \frac{x^2 – 2x – 3}{x – 3} &= \lim_{x \to 3} \frac{(x – 3)(x + 1)}{x – 3} \\ 

& = \lim_{x \to 3} \frac{\cancel{(x – 3)}(x+1)}{\cancel{x-3}} \\ 

& = \lim_{x \to 3} x + 1 \\ 

& = (3) + 1 \\ 

& = 4 

\end{align*} 

Notice though that it’s not right to say  always, since they are not equal 

when . At ,  is not defined, and  is. However, if you’re inside a 

limit as , then  is not equal to , it is just approaching . Hence it is okay to cancel those terms. 

When dealing with rational expressions, sometimes you can’t cancel terms but can still find the 

value of the limit. For example, 

Problem Find , 

The numerator does not factor. So there isn’t anything we can cancel. But if we just plug in , 

we see 

\begin{align*} 

\lim_{x \to -2} \frac{x^2 + 2}{x-2} & = \frac{(-2)^2 + 2}{(-2) – 2} \\ 

& = \frac{6}{-4} = – \frac{3}{2}. 

\end{align*} 
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In this example, the top is approaching , and the bottom . Since there is no division by zero here, 

the limit value is just . Easy peasy! 

If you plug in a value to take a limit and you get a nonzero number divided by zero, you can just say 

the limit does not exist. For example, 

Problem 

we see 

\begin{align*} 

\lim_{x \to -3} \frac{x}{x + 3} & = \frac{-3}{(-3) + 3} \\ 

& = \frac{-3}{0}. 

\end{align*} 

Here, the denominator is approaching zero, while the numerator is holding steady at . The result 

of this is dividing by smaller and smaller numbers, which means the value is getting bigger and bigger 

to infinity. Thus, the limit does not exist. Check out the table for this problem. 

Simplified 

As you can see,  is really large when  is close to . In short:  is the indeterminate case where 
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factoring and cancelling is a good idea. Anything else divided by zero is easy to determine: does not 

exist. 

Example Algebraic limits 

Find the following limit values algebraically in each case. 

1. Problem 

Here, we just need to plug in  and we have . Since we 

didn’t divide by zero, this is continuous at this point, so we can just plug in the value. 

2. Problem 

Classic example where we factor the top and cancel. 

3. Problem 

In this example, we plug in  and have . Since we are dividing by zero, this 

. 

4. Problem 

Another example of factoring and cancelling. 
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5. Problem 

Another example of factoring and cancelling, but this time the top is already factored! 
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CHAPTER 11 

HOMEWORK: HOMEWORK: ALGEBRAIC ALGEBRAIC LIMITS LIMITS 

1. Factor the following polynomials. 

a. 

ans 

b. 

ans 

c. 

ans 

2. If you’re doing a limit with a continuous function, like , how can you quickly 

solve this limit problem? 

Plug it in! 

ans 

3. Compute the following limits algebraically. 

a. 

ans 

b. 

ans 

c. 

ans 



d. 

ans 

e. 

ans 

f. 

ans 

g. 

ans 
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CHAPTER 12 

INSTANTANEOUS INSTANTANEOUS VELOCITY VELOCITY 

W 
hat can we say about velocity if the position graph is a curve? 

Problem For example, if , we’d get a graph that looks like this. 

20

40

60

5 10 15

POSITION

m
et
er
s

seconds

What is the velocity at ? Seriously, what is it? I want to know. 

Well, a first stab might be that it is the slope, since that is what we said before. But generally slope is 

only applied to lines, not curves like this. How could we find slope for a curve? 

Well, recall that slope is just how steeply something is increasing. It turns out, we can take a line that 

is increasing with the same steepness as the curve at a given point, and measure the slope of the line. 

5 10 15

POSITION

Here, the red line is the same steepness as the curve at . This is called a tangent line. Note that 

often the tangent line only touches the curve once. Since it is a line, we can measure the slope, and 

this should represent the velocity at . But since it touches one time, we don’t have two points 



to compute the slope. This may seem like a minor problem, but to find the exact slope takes one of 

the major insights in calculus: we need to develop a process to get closer and closer, and then use a 

limit to find the exact value. This might seem like a lot of work but it is worth it, as it demonstrates 

the power of calculus. 

Let’s zoom in a bit on the graph: 

5

Okay, now we can start to see some things. First, notice we know the -value or function value at the 

point . Why? Since the function  is giving the position, we can plug in . 

We see . 

5

50

But this doesn’t give us the slope. To find a slope, you need two points — then you can use the rise over 

run formula. But we only have one point. So instead let’s look at a line that does have two intersection 

points, but is not quite the line we want. 
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5

50

Let’s say this new green line hits the curve at . A line like this green one that hits in two locations 

is called a secant line. What is the -value at ? Well, it’s . 

5

50
54

6

Now we can find the slope of the green line. It’s , since that is what rise over 

run tells us. But again, it isn’t quite the line we want. Instead, we could choose a blue line that’s even 

closer. 

5

50

65.5

52.25

Now the slope of the blue line is . Still not there. But we can get closer and 
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closer and closer. Instead of repeating this calculation every time, let us use variables. So instead of 

the blue line crossing at , let’s just say it crosses at , or  to the right of where the 

red line crosses. 

5

50

5+h

?

h

What is the blue question mark? Well, we just plug  in to . We see 

\begin{align*} 

p(5 + h) & = 15(5 + h) – (5 + h)^2 \\ 

& = 75 + 15h – (25 + 10h + h^2) \\ 

& =75 + 15h – 25 – 10h – h^2 \\ 

& = 50 + 5h – h^2 

\end{align*} 

There you go. 

5

50

5+h
h

Now the slope is rise over run, and we have 

\begin{align*} 

{\color{blue} \text{slope} } & = {\color{blue} \frac{50 + 5h – h^2 – 50}{5 + h – 5} }\\ 

& = {\color{blue}\frac{5h – h^2}{h}} 

\end{align*} 
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Okay, what we are really interested in is when  gets really, really small. That’s when the blue line 

slope will equal the red line slope, and the red line slope is what we want. But we can’t plug in , 

since that would give a division by zero explosion. So instead, we can use a limit! 

\begin{align*} 

{\color{red}\text{slope}} & = \lim_{h \to 0} {\color{blue} \frac{5h – h^2}{h}} \\ 

& = \lim_{h \to 0} {\color{blue} \frac{h(5 – h)}{h}} \\ 

& = \lim_{h \to 0} {\color{blue} (5 – h)} \\ 

& = 5 – (0) \\ 

& = 5 

\end{align*} 

And there you have it. The slope of the red line is ! 

Now, suppose instead of , we were interested in the instantaneous velocity at . And 

suppose instead of , we had some other function describing position, which we call . 

What would the picture look like then? Well, it would look very similar to the last picture. 

x

f(x)

x+h

f(x + h)

h

f(x)

And this is the picture that gives us the definition of the derivative. What is the blue slope? It’s 

So how do we find the red slope? We just take the limit as the blue line approaches the red — that 

is, see what happens as  goes to zero. 

Here is the notation for the derivative: , , or . 
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CHAPTER 13 

HOMEWORK: HOMEWORK: INSTANTANEOUS INSTANTANEOUS VELOCITY VELOCITY 

1. The position of a falling object follows the equation  from  to 

. 

a. Verify that the points  and  are on the curve by computing  and 

 and verifying you get  and . 

This seems to work. 

ans 

b. Compute the slope of the line going through  and . 

-48 

ans 

c. Verify that the points  and  lie on the curve. 

You’ve already done , so now just simplify  and verify you get 

. 

This seems to work. 

ans 

d. Compute the slope of the line through  and 

(hint: you should get !) 

2. The position of a falling object follows the equation  from  to 

. 

a. Verify that the points  and  line on the curve, and compute the slope 

through these two points. 

The slope is 

ans 

b. Verify that the points  and  lie on the curve, 

and compute the slope of the line through these two points. 

The slope is . 



ans 

3. Let  represent a population of goats, where  is measured in 

goats and  is measured in years. Suppose  only works on the range from  to . This 

population is stabilizing during this period. 

a. Sketch a graph of . 

b. Find the slope of the secant line hitting  at  and . 

 goats per year 

ans 

c. The slope of the secant line hitting  at  and . 

 goats per year 

ans 

d. What is  for your answer in part (c)? 

 goats per year. 

ans 

e. How quickly is the goat population growing at ? 

 goats per year. 

ans 
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CHAPTER 14 

ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS TRICKS IV IV (TIPS (TIPS FOR FOR DEALING DEALING WITH WITH 
FRACTIONS) FRACTIONS) 

A QUICK FRACTION HINT 

A 
couple of ideas while working with fractions. Note that if you distribute a number times a 

fraction, you multiply on top: 

The reason is when we multiply fractions, we multiply straight across, and we can always think of 

 as . Hence . 

COMPLEX FRACTIONS 

If you have “fractions within fractions”, this calls out to be simplified. One way to do it is to multiply 

top and bottom of the outer fraction by the same number so that the inner fractions go away. For 

example, 

Problem 

If we multiply top and bottom by  in the following example, that gets rid of the  and the 

denominators: 

\begin{align*} 

\left(\cfrac{\cfrac{1}{3} – \cfrac{\sqrt{3}}{3} }{ \cfrac{1}{9} } \right) \cdot \cfrac{9}{9} & = \cfrac{9 \cdot 

\cfrac{1}{3} – 9 \cdot \cfrac{\sqrt{3}}{3} }{ 9 \cdot \cfrac{1}{9} } \\ 

& = \frac{3 – 3 \sqrt{3}}{1} \\ 

& = 3 – 3 \sqrt{3} 

\end{align*} 

You can also multiply by the reciprocal instead of dividing. Like this: \begin{align*} 



\left(\cfrac{\cfrac{1}{3} – \cfrac{\sqrt{3}}{3} }{ \cfrac{1}{9} } \right) & = \left(\cfrac{1}{3} – 

\cfrac{\sqrt{3}}{3}\right) \cdot \frac{9}{1} \\ 

& = 9 \cdot \cfrac{1}{3} – 9 \cdot \cfrac{\sqrt{3}}{3} \\ 

& = 3 – 3 \sqrt{3} 

\end{align*} 

The same thing happens with variables. Consider this problem: 

Problem 

We can simplify this by multiplying by  to get rid of the  and  denominators on top. 

\begin{align*} 

\cfrac{\cfrac{1}{x} + \cfrac{1}{y}}{x} & = \cfrac{\cfrac{1}{x} + \cfrac{1}{y}}{x} \cdot \frac{xy}{xy} \\ 

& = \cfrac{\cfrac{xy}{x} + \cfrac{xy}{y}}{xxy} \\ 

& = \cfrac{y + x}{x^2y} 

\end{align*} 

Here’s one more example. 

Problem Simplify . 

To simplify this one, we need to clear all the denominators by multiply by ,  and . 

Not easy, but we can do it. 

\begin{align*} 

\cfrac{\cfrac{1}{x+1} – \cfrac{1}{x-1}}{\cfrac{1}{x}} \cdot \frac{x(x-1)(x+1)}{x(x-1)(x+1)} & = 

\cfrac{\cfrac{x(x+1)(x-1)}{x+1} – \cfrac{x(x+1)(x-1)}{x-1}}{\cfrac{x(x+1)(x-1)}{x}}\\ 

& = \cfrac{x(x-1) – x(x+1)}{(x-1)(x+1)}\\ 

& = \cfrac{x^2 – x – (x^2 + x)}{x^2 – 1} \\ 

& = \cfrac{x^2 – x – x^2 – x}{x^2 – 1} \\ 

& = \cfrac{-2x}{x^2 – 1} 

\end{align*} 
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CHAPTER 15 

DEFINITION DEFINITION OF OF DERIVATIVE DERIVATIVE EXAMPLES EXAMPLES 

I n the last section, we saw the instantaneous rate of change, or derivative, of a function  at a 

point  is given by 

Example Definition of Derivative 1 

Problem Find the derivative of the function  using the definition of the 

derivative. 

To use this in the formula , first we need to replace the 

part of the formula. This is the same as  which is , except we replace  with that 

 in parantheses. Like the following. The colors are only to highlight the substitution of 

 and . We’ll drop the colors as soon as we need to combine expressions. 

\begin{align*} 

f'(x) & = \lim_{h \to 0} \frac{{\color{blue} f(x + h)} – {\color{red} f(x)}}{h} \\ 

& = \lim_{h \to 0} \frac{{\color{blue} 3(x + h) + 5} – {\color{red} 3x + 5}}{h} \\ 

\end{align*} 

Now we continue to simplify and find the answer. 

\begin{align*} 

f'(x) & = \lim_{h \to 0} \frac{{\color{blue} f(x + h)} – {\color{red} f(x)}}{h} \\ 

& = \lim_{h \to 0} \frac{{\color{blue} 3(x + h) + 5} – {\color{red} 3x + 5}}{h} \\ 

& = \lim_{h \to 0} \frac{3x + 3h + 5 – 3x – 5}{h} \\ 

& = \lim_{h \to 0} \frac{3h}{h} \\ 

& = \lim_{h \to 0} 3 \\ 

& = \boxed{3} 

\end{align*} 

Here, we have . That makes sense if you think about it:  is a line with slope ! 



Example Definition of Derivative 2 

Problem Find the derivative of  using the definition. 

\begin{align*} 

f'(x) & = \lim_{h \to 0} \frac{{\color{blue} f(x + h)} – {\color{red} f(x)}}{h} \\ 

& = \lim_{h \to 0} \frac{{\color{blue} (x + h)^2} – {\color{red} x^2}}{h} \\ 

& = \lim_{h \to 0} \frac{{\color{blue} x^2 + 2xh + h^2} – {\color{red} x^2}}{h} \\ 

& = \lim_{h \to 0} \frac{2xh + h^2}{h} \\ 

& = \lim_{h \to 0} \frac{h(2x + h)}{h} \\ 

& = \lim_{h \to 0} 2x + h \\ 

& = 2x + (0) \\ 

& = \boxed{2x} 

\end{align*} 

So what does this mean? Well, this means we double  to find the slope of the tangent line of 

. So at , the slope is , and at , the slope is . ETC. 
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CHAPTER 16 

PROJECT: PROJECT: HARD HARD DEFINITION DEFINITION OF OF DERIVATIVE DERIVATIVE PROBLEMS PROBLEMS 

P P 
urpose of the project: Struggle through a difficult but important calculus problem. 

Each of the following is a difficult definition of the derivative problem. Your group will be 

assigned one of the following, and then you can present the solution to the class. In each case, 

the “stuff in the example box” is not your problem, but look at it and hopefully it will help with your 

problem. 

1. Let . Using the definition of the derivative, find . 

Example Simplify .We can do this problem by splitting it up into 

. We know  — that means 

To solve from here, we need to multiply every term of  by , then 

every term by , then every term by , and add it all up. Here we go: \begin{align*} 

(x + 1)^4 & = (x^2 + 2x + 1)({\color{green} x^2} + {\color{red} 2x} + {\color{blue} 1}) \\ 

& = (x^2 + 2x + 1){\color{green}x^2} + (x^2 + 2x + 1){\color{red}2x} + (x^2 + 2x + 

1){\color{blue}1} \\ 

& = {\color{green} x^4 + 2x^3 + x^2} + {\color{red}2x^3 + 4x^2 + 2x} + {\color{blue}x^2 + 

2x + 1} \\ 

& = x^4 + 4x^3 + 6x^2 + 4x + 1. 

\end{align*} 

2. Let . Using the definition of the derivative, find  (which can also be 

written  or ). 

Example Rationalize the numerator of . 

To “rationalize the numerator”, the trick is to multiply top and bottom by what is known 

as the conjugate: it is the same as the numerator, only the sign is flipped so that 



subtraction becomes addition or vice versa. In this case, the conjugate is 

. We see 

\begin{align*} 

\frac{\sqrt{x + 1} – \sqrt{x}}{x} & = \frac{(\sqrt{x + 1} – \sqrt{x})}{(x)} \cdot \frac{(\sqrt{x + 

1} + \sqrt{x})}{(\sqrt{x + 1} + \sqrt{x})}\\ 

& = \frac{(\sqrt{x + 1} – \sqrt{x})(\sqrt{x + 1} + \sqrt{x})}{(x)(\sqrt{x + 1} + \sqrt{x})} \\ 

& = \frac{(\sqrt{x + 1})^2 – (\sqrt{x})^2}{x(\sqrt{x + 1} + \sqrt{x})} \\ 

& = \frac{x+1 – x}{x(\sqrt{x + 1} + \sqrt{x})} \\ 

& = \frac{1}{x(\sqrt{x + 1} + \sqrt{x})} 

\end{align*} 

The numerator is now rationalized. 

3. Let . Using the definition of the derivative, find  (which can also be 

written  or ). There are three facts we need to compute this derivative: 

◦ 

◦ 

◦ 

Example Find . 

In this example, we use the first fact listed above to write 

. We have the original problem is equal 

to 

\begin{align*} 

& = \lim_{h \to 0} \frac{\sin(y) \cos(h) + \cos(y) \sin(h)- \sin(y) \cos(h)}{h} \\ 

& = \lim_{h \to 0} \frac{\cos(y) \sin(h)}{h} \\ 

& = \lim_{h \to 0} \frac{\sin(h)}{h} \cdot \cos(y) \\ 

& = 1 \cdot \cos(y) \\ 

& = \cos(y) \end{align*} 

Notice towards the end we used . 
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4. Let . Using the definition of the derivative, find  (which can also be written 

 or ). Use the limit we found on the homework yesterday: . 

Example Helpful example: Simplify . 

Recall that . Hence this becomes 

\begin{align*} 

\frac{e^{x + 1} + e^1}{e^x + 1} & = \frac{e^x e^1 + e^1}{e^x + 1} \\ 

& = \frac{e^1(e^x + 1)}{e^x + 1} \\ 

& = e^1 = e 

\end{align*} 

5. Let . Using the definition of the derivative, find  (which can also be written 

 or ). 

Example Simplify . 

In this example, we want to clear the denominators from this tricky double fraction. To 

do this, we will multiply by both denominators: . 

\begin{align*} 

\cfrac{\cfrac{1}{x + 1} – \cfrac{1}{x}}{x} & = \cfrac{\left(\cfrac{1}{x + 1} – \cfrac{1}{x} 

\right)}{x} \cdot \frac{x(x + 1)}{x(x + 1)} \\ 

& = \cfrac{\left(\cfrac{1}{x + 1} – \cfrac{1}{x} \right)x(x + 1)}{(x)(x)(x + 1)} \\ 

& = \cfrac{\left(\cfrac{x(x + 1)}{x + 1} – \cfrac{x(x + 1)}{x} \right)}{x^2(x + 1)} \\ 

& = \cfrac{x – (x + 1)}{x^2(x + 1)} \\ 

& = \cfrac{-1}{x^2(x + 1)} 

\end{align*} 

6. Let . Using the definition of the derivative, find  (which can also be 

written  or ). We will need the following facts: 

◦ 
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◦ 

◦ 

◦ 

Example (Example 1): Rewrite  as the natural log of a single 

quantity. 

We need to use some log rules to simplify this. First we use 

. 

\begin{align*} 

\frac{\ln(x+5) – \ln(x)}{2} & = \frac{\ln\left(\frac{x+5}{x}\right)}{2} \\ 

& = \frac{\ln\left(1 + \frac{5}{x} \right)}{2} 

\end{align*} 

Now we use , thinking of the division by  as a multiplication by 

. 

\begin{align*} 

\frac{\ln\left(1 + \frac{5}{x} \right)}{2} & = \frac{1}{2} \ln\left(1 + \frac{5}{x} \right) \\ 

& = \ln \left(\left(1 + \frac{5}{x} \right)^{1/2}\right) 

\end{align*} 

Example (Example 2): Simplify . 

In this example, we know from our facts above that . We also see 

that 

\begin{align*} 

\lim_{h \to 0} \left(1 + \frac{3h}{k}\right)^{1/h} & = \lim_{h \to 0} \left(1 + 

\frac{3h}{k}\right)^{1/h} \\ 

& = \lim_{h \to 0} \left(1 + h \left(\frac{3}{k}\right) \right)^{1/h} 

\end{align*} 

Notice now that  is playing the same role as  in the  equation. So this simplifies to 

. 
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CHAPTER 17 

HOMEWORK: HOMEWORK: EXAMPLES EXAMPLES OF OF THE THE DEFINITION DEFINITION OF OF THE THE 
DERIVATIVE DERIVATIVE 

1. Simplify each expression involving fractions or rational expressions. 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 



e. 

ans 

2. In each case, use the definition of the derivative to find  (in other words, take the 

derivative!) 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e.  (hint: from yesterday’s homework, we have ) 

ans 

f. 

ans 

3. In each case, use the definition of the derivative to find  (in other words, take the 

derivative!). Each of these is like one of the “hard problems” (click here) 

a. 
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ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 

f. 

ans 

4. Recall the derivative of  is given by . 

a. Show that the derivative of  is  using the definition of the 

derivative. Can you find an intuitive reason why  and  would have the 

same derivative? 

Adding a constant moves the curve up or down, but that shift does not affect the 

slope of the tangent line 

ans 

b. Find another function whose derivative is , other than  and . 

 for any value 

ans 
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CHAPTER 18 

PROJECT: PROJECT: KILLDEER KILLDEER MIGRATION MIGRATION SPEED SPEED 

P P 
urpose: To calculate a derivative with messy and incomplete data. 

(image credit: Becky Matsubara) 

Killdeer are small birds famous for their loud, squeaky call and defense behavior that includes 

feigning wing injuries. Their population is also mysteriously declining, so getting a handle on their 

numbers and migratory patterns is important. They are partially migratory, with some going from the 

southern US and Mexico up to the northern US and Canada, while some stay put. The main question 

here is to use messy data to get some sort of idea of how fast they are moving at any given time. 

1. To simplify things, suppose there are just three migrating killdeer birds, and they don’t 

migrate together necessarily. These three birds were seen at various positions along a 



migration route. Note that each data point is only one of the three birds, and you don’t 

know which one. 

The goal is to fill out a new table with the velocity or derivative of the killdeer at any given 

time. Since you don’t really know which killdeer is which, this velocity will represent some 

sort of average or aggregate velocity for the three killdeer. 

What are some different ways you can do this? Talk about it as a group, and then work 

towards filling in the second table. Do the birds seem to be getting faster as time passes, or 

slower? 

2. Same type of question with a new setup. The goal is to figure out a rough speed of migration 

(just one number this time). There are three areas: Mexico, Oklahoma, and Montana, and 

you have rough esimates for the abundance in each of the three areas during both the non-

breeding and breeding seasons. For simplicity, assume all the killdeer stay within these three 

areas (even though that is clearly false). How can you figure some sort of average velocity of 

the killdeer in this case? 

3. Look at the excel spreadsheet entitled “Killdeer abundance data”, with data taken from the 

eBird data repository. 

Click here for a cool visualization of this data. 

Use the data in the spreadsheet to create a best guess average velocity during the time 

period starting with the non-breeding season and ending with the breeding season (roughly 

January through June). The final answer is just that one number, but there is a lot of data to 

sort through to get there! 
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Data source: Fink, D., T. Auer, A. Johnston, M. Strimas-Mackey, O. Robinson, S. Ligocki, B. Petersen, 

C. Wood, I. Davies, B. Sullivan, M. Iliff, S. Kelling. 2020. eBird Status and Trends, Data Version: 2018; 

Released: 2020. Cornell Lab of Ornithology, Ithaca, New York. https://doi.org/10.2173/ebirdst.2018 
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CHAPTER 19 

ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS TRICKS PART PART V V (EXPONENTS) (EXPONENTS) 

EXPONENTS 

W 
hen simplifying exponents, remember the exponentiation is just repeated multiplications. So 

if you have something like 

This is three s multiplied by seven s, so that’s ten s all multiplied together. 

Similarly, all these other rules don’t even have to be memorized if you just think about how repeated 

multiplication would work. But here they are anyway. 

\begin{align*} 

A^x A^y & = A^{x + y} \\ 

\frac{A^x}{A^y} & = A^{x – y} \\ 

\left( A^x \right)^y & = A^{xy} \\ 

A^{-x} & = \frac{1}{A^x} \\ 

A^0 & = 1 

\end{align*} 

Some examples: 

• Problem . 

Here we have eleven s, and we are taking away via division five of them then four of them. 

Hence we have two s left over: . Note that  is a fundamental constant in 

mathematics, like , equal to  approximately, but we just use  for 

the exact value. 

• Problem . 



We see . On bottom, we have . This give . 

Once we get cancel two of the As and three of the Bs, we have . 

• Problem . 

This looks ugly, but , and anything to the zeroth power is . Hence the answer is 

. 

• Problem . 

This combines as , which we can also write as . 

FRACTIONAL EXPONENTS 

One more rule before you go: . In other words, a fraction in the exponent is the 

same thing as taking a square root, cube root, 4th root, etc, depending on what the denominator is. 

Some examples: 

• Problem . 

We see this is the same thing as , which is . 

• Problem . 

This is the same thing as . We see that , and hence we do . So 

. 
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CHAPTER 20 

POWER POWER RULE RULE 

“I’ ve got the power!” –Snap (German band) 

If you apply the definition of the derivative to several functions, you’ll see: 

See the pattern? 

As we’ll see in the next section, this even works for non-integers. The key is to multiply by the 

exponent, then decrease the exponent by one. 

The next rules say that constant multiples and addition work nicely. 

The key is you can just worry about the derivative of each piece of a sum separately. Constant 

multiples “come along for the ride”. With only these three rules, you can now take the derivative of 

any polynomial. Check it out. 

Example Power 

Find the following derivatives. 

1. Problem 



To do this one, we use the power rule on the  part, and get . However, we are 

also multiplying by , so the answer is multiplied by  as well. Hence the answer is 

. 

2. Problem 

By the power rule, we find , and  is  which becomes  by 

the power rule, which is . By the addition rule, we have . 

3. Problem 

You take the derivative of  and you have . Times by , that leaves . Okay, about 

the five? It is tempting to leave the five put, but actually . Why? Well, it’s a 

constant, so it does not affect the slope. Hence we get . 

MORE POWER RULE EXAMPLES 

Note that the power rule works with fractional and negative exponents as well! Here are some 

examples. 

Example Fractional 

Problem Find . 

To apply the power rule in this case, we need to first multiply by the exponent ( ), then subtract 

one from the exponent . Then we have 
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Example Negative 

Problem Find . 

In this problem, we just worry about the  to start with. We multiply by the exponent , 

and then subtract one from that to get . Then we have 

Sometimes there are hidden fractional or negative exponents. Don’t let them fool you, they are just like 

the examples above. Just remember these rules: 

     

Let’s see some examples. 

Example Roots 

Find 

1. Problem 

This problem is much easier if we can rewrite the . This is the same thing as , 

and hence we have 

2. Problem 

To solve this, it really helps to rewrite  as . Once you do that, this prolem is just 

the power rule and constant multiple rule: 

INFORMAL  CALCULUS 97



3. Problem 

Focus on the easy parts first: we know , and we know that . So we 

just need to figure out the . What is this? Well, we can rewrite this as . 

So now it is just the power rule, and we multiply by  and subtract to get . Hence 

. Putting it all together: 

Example Powers of  in the denominator 

1. Problem 

We can rewrite  as . Now we apply the power rule: 

2. Problem 

We can think of  as just a constant out front, and hence we want . We can 

then rewrite  as . And we want . Using the power rule, we multiply 

by  and subtract one, and we have 
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3. Problem 

This combines the fractional and denominator stuff. We first rewrite  as : 

We then rewrite as a negative fractional exponent. 

Finally, we use the power rule. 
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CHAPTER 21 

HOMEWORK: HOMEWORK: POWER POWER RULE RULE 

1. Compute the following derivatives. Do not use the definition of the derivative. Instead, use 

the linearity and power rules we talked about in this section. 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 

f. 



ans 

g. 

ans 

h. 

ans 

i. 

ans 

j. 

ans 

k. 

ans 

l. 

ans 
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CHAPTER 22 

ALGEBRA ALGEBRA TIPS TIPS AND AND TRICKS TRICKS PART PART VI VI (LOGARITHMS) (LOGARITHMS) 

LOGARITHMS 

A 
logarithm is the inverse function to an exponential function. For example, for the exponential 

function , if we have an input of , we get an output of , and we write 

. The logarithmic function  is the reverse of this. We swap the input and 

the output, so now  and . We see . 

In calculus, we will mostly use the exponential function  and its inverse, . Below are some 

important formulas: 

\begin{align*} 

e^{\ln(x)} & = x \\ 

\ln(e^x) & = x \\ 

\ln(x) + \ln(y) & = \ln(xy) \\ 

\ln(x) – \ln(y) & = \ln\left(\frac{x}{y}\right) \\ 

a \ln(x) & = \ln(x^a) 

\end{align*} 

Examples: 

 

Problem . 

There are two ways to do this one. First, we can bring down the exponent of two down in front 

. Then can combine the like terms of  and : 

\begin{align*} 

\ln(x^2) – \ln(x) & = 2 \ln(x) – \ln(x) \\ 

& = \boxed{\ln(x)} 

\end{align*} 

Alternatively, we can rewrite the subtraction as a division, like so: 

\begin{align*} 

\ln(x^2) – \ln(x) & = \ln\left(\frac{x^2}{x}\right) \\ 

& = \boxed{\ln(x)} 

\end{align*} 

Either way we get the same answer! 

 



Problem . 

First, we rewrite the multiplication using addition. Then we can simply from there. 

\begin{align*} 

\ln(e^3 x^4) – 3 \ln(x) & = \ln(e^3) + \ln(x^4) – 3 \ln(x)\\ 

& = 3 + 4 \ln(x) – 3 \ln(x) \\ 

& = \boxed{3 + \ln(x)} 

\end{align*} 

 

Problem . 

We know , so . 

 

Problem . 

We can rewrite all the products and divisions as addition and subtraction: 

\begin{align*} 

\ln\left(\frac{\sqrt{x} y}{z^3}\right) – \ln\left(\frac{z}{\sqrt{x} y^3}\right) & = \ln(\sqrt{x}) + \ln(y) – 

\ln(z^3) – [\ln(z) – \ln(\sqrt{x}) – \ln(y^3)] \\ 

& = \frac{1}{2} \ln(x) + \ln(y) – 3 \ln(z) – \ln(z) + \frac{1}{2} \ln(x) + 3 \ln(y) \\ 

& = \boxed{\ln(x) + 4 \ln(y) – 4 \ln(z)}. 

\end{align*} 
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CHAPTER 23 

EXPONENTIALS, EXPONENTIALS, LOGARITHMS, LOGARITHMS, AND AND TRIG TRIG FUNCTIONS FUNCTIONS 

THE FUNCTION 

R ecall that exponential functions like , , and . Note that  is just a number, equal to about 

, and is very special when it is the base of an exponential function. All these exponential 

functions grow extremely quickly. Here is , and watch how quickly it flies out of the picture. 

We can modify it so it doesn’t grow so fast. Consider : 

https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/pgf1.svg


But even this starts to grow very quickly when  gets large. Here is  again for larger values of 

. 

Hey, that looks a lot like the graph of  did! Why is that? 

Exponentials at various rates of growth model a wide array of phenomena, including population 

106 TYLER  SEACREST

https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/pgf2.svg
https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/pgf1.svg


growth, economic growth, radioactive decay, and more. And the reason  is a very special function 

is one of the most amazing formulas in math: 

That’s right;  doesn’t change when you take the derivative! 

THE FUNCTION 

Logarithms, on the other hand, are some of the slowest growing functions. Here is , which is 

, for large values of : 

Notice even for large values of , the function does not get larger than  in this picture. Natural log 

, which again is the log with base , also has a special derivative. 

Here is  in blue plotted with its derivative  in green. 
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Example Exponents and Logs and More 

Find the following derivatives. 

1. Problem 

We just need to take the derivative of each term. The  stays the same when you take 

the derivative, so we just leave that piece. The , as we saw above, has derivative . 

Hence 

2. Problem 

We can use the power rule on  — multiply by the two, and subtract one from the two, 

to get . We then see that  is  , and the  stays along for the ride. So 
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3. Problem 

Remember that to take the derivative of , we rewrite as  and use the power 

rule, and we have . For , the  becomes , and the four multiplies. 

Therefore we have 

But wait — these fraction actually can be added together. First, change the  back 

into . Then we’ll get a common denominator, and simplify. 

\begin{align*} 

-1 x^{-2} + 4\left(\frac{1}{x} \right) & = \frac{-1}{x^2} + \frac{4}{x} \\ 

& = \frac{-1}{x^2} + \frac{4}{x} \cdot \frac{x}{x} \\ 

& = \frac{-1}{x^2} + \frac{4x}{x^2} \\ 

& = \frac{4x – 1}{x^2} 

\end{align*} 

Hence we have 

Two more quick formulas. 

We’ll prove the first rule once we have the chain rule up and running. For the second rule, the proof 

only requires the base change formula. 
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Example Log in base  proof 

Problem Prove the following rule 

• 

We use the base change formula, which states 

From this we see 

\begin{align*} 

\frac{d}{dx} \ \log_a(x) & = \frac{d}{dx} \ \frac{1}{\ln(a)} \ln(x) \\ 

& = \frac{1}{\ln(a)} \frac{d}{dx} \ \ln(x) \\ 

& = \frac{1}{\ln(a)} \cdot \frac{1}{x} \\ 

& = \frac{1}{\ln(a) \cdot x}. 

\end{align*} 

Now this proof demonstrates a tricky thing in calculus: sometimes we can just “bring things 

out” of the derivative like we did with , and other times we cannot. The reason we could 

take the  out is that it is considered a constant. The derivative  is only measuring the 

change as  changes, not as  changes. So  is a constant, or unchanging value as  changes. 

Therefore, by the constant multiple rule, we can just take it out of the derivative. 

Now to use the new rules. 

Example Base  examples 

Compute the following derivatives. 

1. Problem 

110 TYLER  SEACREST



We use the formula on  and see the derivative is . Same goes for 

. So the end result is . 

2. Problem 

We use the formula to get , and multiply the answer by  and 

get . 

3. Problem 

We have 

\begin{align*} 

\frac{d}{dx} \frac{5^x}{\ln(5)} & = \frac{1}{\ln(5)} \frac{d}{dx} 5^x \\ 

& = \frac{1}{\ln(5)} \ln(5) \cdot 5^x \\ 

& = \boxed{5^x} 

\end{align*} 

THE FUNCTIONS  AND 

The sine function, denoted , captures oscillating behavior of waves, circles, pendulums, and 

more. Cosine, denoted , is a similar function that does the same thing. Here are  and 

 on a graph. 
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A few important values to know for  and  are given by the table below. 

First note that the  values have a  in them — this is actually a way of measuring angles called 

radians. You can also use  and  with degree angle measurements, but for calculus, it works 

much better in radians. Make sure your calculator is in radian mode for this class. Notice also 

that the outputs for  and  with  are the same as with . That’s not a 

coincidence —  and  functions repeat over and over again every . 

The functions  and  work very well with calculus, as shown by these important 

formulas: 
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Example Sine and Cosine derivatives 

Compute the following: 

1. Problem 

Using the formulas from this section and earlier in the chapter, we see 

2. Problem 
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CHAPTER 24 

HOMEWORK: HOMEWORK: EXPONENTS, EXPONENTS, LOGS, LOGS, TRIG TRIG FUNCTIONS FUNCTIONS 

1. Take the derivative of the following functions 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 





CHAPTER 25 

PRODUCT PRODUCT RULE RULE 

O kay, but what about ? Can we just take the derivative of each like this? 

\begin{align*} 

\frac{d}{dx} x \cdot e^x & = \left( \frac{d}{dx} x \right) \cdot \left( \frac{d}{dx} e^x \right) \\ 

& = 1 \cdot e^x = e^x 

\end{align*} 

Unfortunately, no. Just to be clear: the above calculation is false! 

Think about . We know , so therefore you might think 

But we also know that . So what do we make of this? Well, we just have 

to give up on the idea of “taking the derivative of each” with products. Luckily, there is a rule called 

the product rule that works great: 

The motto for this rule is “the first times the derivative of the second, plus the second times the 

derivative of the first.” 

Where does this rule come from? Well, consider this picture: 



Here we have a rectangle. The height is , the width is . The area of the rectangle is . If we were 

to make  bigger by a little bit, by say , and  bigger by , then the rectangle would become 

bigger too. We want to find out how quickly the area is increasing. So how quickly is it increasing? You can 

see in the picture we add three sections on: , , and . If you think of  and 

 as being really small, though, the  terms is incredibly tiny — so tiny it does not affect 

the answer in the limit. Therefore, the new area is . This is where the product rule 

comes from — it’s how an area changes as you change each side length. 

Let’s see this rule in action. 

Example 

Product Rule with 

Problem Find . 

In this case, we can attack this using the product rule with , and . We can easily take 

the derivative of each part: , and . Hence, using the formula 

, we have 
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Example 

Another Product Rule 

Problem Find . 

We see  and . Hence, we have 

\begin{align*} 

\frac{d}{dx} {\color{red} x^2} {\color{blue} \cos(x)} & = {\color{red} f} {\color{blue} g’} + {\color{blue} 

g} {\color{red} f’} \\ 

& = {\color{red} x^2} {\color{blue} (-\sin(x))} + {\color{blue} \cos(x)} {\color{red} 2x} \\ 

& = \boxed{-2x^2 \sin(x) + 2x \cos(x)}. 

\end{align*} 

Example 

Product Rule with 

Problem Find  in two different ways: one way using the product rule, one way 

using the power rule. 

Using the power rule, we see . Using the product rule, we set 

and . In which case,  and . Thus 

Hurray! The same answer! Isn’t it great when math just plain works. 

Example 

Another Product Rule 

Problem Find . 

We see , . For , we rewrite  and use the power rule to get 
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, which is . As we saw in the exponents and logarithms section, 

. Hence \begin{align*} 

\frac{d}{dx} \sqrt{x} \ln(x) & = f g’ + g f’ \\ 

& = \sqrt{x} \frac{1}{x} + \ln(x) \frac{1}{2 \sqrt{x}} \\ 

& = \frac{\sqrt{x}}{x} + \frac{\ln(x)}{2 \sqrt{x}} 

\end{align*} 

Now if you want to be a bit fancy with the algebra, we can simplify  using rational exponents. 

It is equal to , which is . If we turn this back into a root, we get . From 

here, we can find a common denominator and add the two fractions.\begin{align*} 

\frac{d}{dx} \sqrt{x} \ln(x) & = \frac{1}{\sqrt{x}} + \frac{\ln(x)}{2 \sqrt{x}} \\ 

& = \frac{2}{2 \sqrt{x}} + \frac{\ln(x)}{2 \sqrt{x}} \\ 

& = \boxed{\frac{\ln(x) + 2}{2 \sqrt{x}}}. 

\end{align*} 

There you go. 
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CHAPTER 26 

HOMEWORK: HOMEWORK: PRODUCT PRODUCT RULE RULE 

1. Take the derivatives of the following functions. 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 

f. 

ans 

g.  (Hint: You can rewrite this as ) 

ans 



h. 

ans 
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CHAPTER 27 

QUOTIENT QUOTIENT RULE RULE 

W hat about ? Can we just take the derivative of the top and bottom separately, and 

put them together? Nope, we need a quotient rule. 

Where did this strange formula come from? Some fancy algebra will get you there as the next 

example shows. 

Example Proving the Quotient Rule 

Problem Prove the quotient rule . 

Note that I’m using  and  instead of  and  right now because we will need  and  to mean 

something else in just a second. 

So what can we do? One way it to use the product rule in a strange manner. We are going to 

apply it to . We set , and . We see 

\begin{align*} 

\frac{d}{dx} \left( b \cdot \frac{a}{b} \right ) & = f g’ + g’ f \\ 

& = b \left( \frac{d}{dx} \frac{a}{b} \right) + \left(\frac{a}{b} \right) \left( \frac{d}{dx} b \right) \\ 

& = b \left( \frac{d}{dx} \frac{a}{b} \right) + \frac{a b’}{b} 

\end{align*} 

But notice that . Hence, we have 



Now we just have to solve for , and we have a formula for derivatives of quotients! 

\begin{align*} 

a’ & = b \left( \frac{d}{dx} \frac{a}{b} \right) + \frac{a b’}{b} \\ 

a’ – \frac{a b’}{b} & = b\left( \frac{d}{dx} \frac{a}{b} \right) \\ 

\frac{1}{b} \left( a’ – \frac{a b’}{b} \right) & = \frac{d}{dx} \frac{a}{b} \\ 

\frac{a’}{b} – \frac{a b’}{b^2} & = \frac{d}{dx} \frac{a}{b} \\ 

\frac{b a’}{b^2} – \frac{a b’}{b^2} & = \frac{d}{dx} \frac{a}{b} \\ 

\frac{b a’ – a b’}{b^2} & = \frac{d}{dx} \frac{a}{b} \\ 

\end{align*} 

If we turn this equation around, it gives the same quotient rule I mentioned earlier: 

This has a cute rhyme to it: “low dee high minus high dee low, over the square of what’s below”. 

The “low dee high” means , since  is the “low” and  is the “dee high”. Then “minus high dee 

low” is . Finally, “over the square of what’s below” is . 

Let’s see how it looks applying the quotient rule. 

Example Quotient Rule with 

Problem Find . 

We set  and . We see , . Using the formula 

, we have 

\begin{align*} 

\frac{d}{dx} \left ( \frac{x}{e^x} \right) & = \frac{b a’ – ab’}{b^2} \\ 

& = \frac{(e^x)(1) – (x)(e^x)}{(e^x)^2} \\ 

& = \frac{e^x (1 – x)}{(e^x)^2} \\ 

& = \boxed{\frac{1 – x}{e^{x}}} 

\end{align*} 

Example Quotient Rule with 
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Problem Find  using the quotient rule and power rule. 

If we simplify and turn  into just , then we have . Easy enough. 

Using the quotient rule, we set  and , with  and . We have 

\begin{align*} 

\frac{d}{dx} \left( \frac{x^2}{x} \right) & = \frac{b a’ – a b’}{b^2} \\ 

& = \frac{(x)(2x) – x^2(1)}{(x)^2} \\ 

& = \frac{2x^2 – x^2}{x^2} \\ 

& = \frac{x^2}{x^2} \\ 

& = \boxed{1} 

\end{align*} 

Same thing we got before! 

Example More Quotient Rule 

Problem Find . 

In this case,  and . We have , . Hence we have 

\begin{align*} 

\frac{d}{dx} \frac{(x^2 + 2x)}{\ln(x)} & = \frac{b a’ – a b’}{b^2} \\ 

& = \frac{(\ln(x)) (2x + 2) – (x^2 + 2x) \left( \frac{1}{x} \right)}{(\ln x)^2} \\ 

& = \boxed{\frac{\ln(x)(2x + 2) – (x + 2)}{(\ln x)^2}} 

\end{align*} 

This doesn’t really simplify farther, so that’s our answer. 

Example With a sine this time 

Problem Find . 

In this case  and , so  and . Hence 

\begin{align*} 

\frac{d}{dx} \frac{\sin(x)}{x} & = \frac{b a’ – a b’}{b^2} \\ 
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& = \boxed{\frac{x \cos(x) – \sin(x)}{x^2}}. 

\end{align*} 
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CHAPTER 28 

HOMEWORK: HOMEWORK: QUOTIENT QUOTIENT RULE RULE 

1. Find the derivatives of the following functions. 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 



f.  (How can you write this as a fraction?) 

ans 

g. 

ans 
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CHAPTER 29 

CHAIN CHAIN RULE RULE 

W 
ith one additional rule, we will have the power to take the derivative of any function we can 

write down. What is this amazing rule? Why, it’s called the chain rule. The chain rule is 

. If we drop the  on each function (note that it is still 

there, it is just implied), we have a slightly shorter version: 

Here,  is called function composition. It does not mean  times . It means we are sticking 

inside of ! Like  is eating ! That’s actually cannibalism if you think about it — so don’t think about 

it too closely. But do remember how to do function composition. 

Why does this work? I’m not going to do a formal proof, but let’s run through an idea behind it. 

Recall that the derivative is the slope or how steep the graph of a function is. This is a lot easier 

to think about if we’re talking about lines. For example, suppose , and 

. As we know from algebra, the slope of the  line is , and the slope of the  line is 

. 

So what is the slope of ? What this means is we are putting  inside of . So if , 

and , we take the blue  and use that to replace the red . Here is 

what is would look like: 

\begin{align*} 

{\color{red}f}({\color{blue}g}) & = {\color{red}6{\color{blue}\left(\frac{1}{2}x + 3\right)}-10} \\ 

& = 6\left(\frac{1}{2}x + 3\right)-10 \\ 

& = 3x + 18 – 10 \\ 

& = 3x – 8 

\end{align*} 

So again, what is the slope of ? We can see from this calculation that it is , the product of the 

two slopes  and . That’s why you have  in the formula. 

Okay, but what about the  after the  in the formula? One way to think about the function 



composition  is we are looking at the  curve at the -location of . When you take the 

derivative, you’re still looking at that same location (now on the  curve), so you still need that 

there to specify that location. 

Example Chain rule with 

Problem Find . 

We must identify an “inside” (g) and “outside” (f) function in order to use the chain rule. Often, 

the “inside” function will be in parentheses (though not always). That works in this case, so the 

“inside” function is , so . The outside function is , and hence . 

We also know  and . Now to use the chain rule, we first need . What is 

this? Well, remember that this is not multiplication, but it is sticking one function inside another. 

In this case, we are taking  and sticking it into the function . This means we 

replace the  in , replacing it with , and get . Hence we have 

\begin{align*} 

\frac{d}{dx} \ln(x^2 + x) & = f'(g) \cdot g’ \\ 

& = \frac{1}{(x^2 + x)} \cdot (2x + 1) \\ 

& = \boxed{\frac{2x + 1}{x^2 + x}}. 

\end{align*} 

There you have it! 

Example Chain rule with 

Problem Find  in two different ways: using power rule, and using the chain 

rule. 

Using the power rule, we first multiply 

. In this form, it 

is easy to find the derivative: . 

Using the chain rule, we identify the inside  function as , and the outside function as 
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. We then have 

\begin{align*} 

\frac{d}{dx} (3x + 1)^2 & = f'(g) \cdot g’ \\ 

& = 2(3x + 1)(3) \\ 

& = 6(3x + 1) \\ 

& = \boxed{18x + 6}. 

\end{align*} 

Again, math just works! 

Things can get quite complicated with the chain rule. 

Example Complicated chain rule 

Problem Find . 

There are no explicit parentheses here, but the square root acts like parentheses, and it designates 

an inside function of . The outside function is therefore . If we rewrite 

 as , we can use the power rule and find . We also have . 

Hence, the chain rule gives 

\begin{align*} 

\frac{d}{dx} \sqrt[4]{ x^2 + 2e^x} & = f'(g) \cdot g’ \\ 

& = \frac{1}{4} (x^2 + 2e^x)^{-3/4} (2x + 2e^x) \\ 

& = \frac{2x + 2e^x}{4} \frac{1}{\sqrt[4]{x^2 + 2e^x}^3} \\ 

& = \boxed{\frac{x + e^x}{2 \sqrt[4]{x^2 + 2e^x}^3 }}. 

\end{align*} 

That’s as simplified as we can get the answer to be. 

One more quick example. 

Example Proof of  rule 

Problem Prove the rule . 

Recall that . To prove this rule, we rewrite . We are then 

computing 
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To compute this derivative, we set  and . We find  and 

, so by the chain rule 

\begin{align*} 

\frac{d}{dx} \ a^x & = \frac{d}{dx} \ e^{x \ln(a)} \\ 

& = f'(g) \cdot g’ \\ 

& = e^{x \ln(a)} \cdot \ln(a) \\ 

\end{align*} 

We’ve already shown that , so this simplifies to , as desired. 
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CHAPTER 30 

HOMEWORK: HOMEWORK: CHAIN CHAIN RULE RULE 

1. Watch this video from Khan Academy: 

Chain Rule Definition and example 

2. Take the derivative of the following functions, each of which involves the chain rule. 

a. 

ans 

b. 

ans 

c.  for constants , , . 

ans 

d. 

ans 

e. 

ans 

f. 

ans 

g. 

ans 

https://www.khanacademy.org/math/differential-calculus/taking-derivatives/chain_rule/v/chain-rule-definition-and-example


h. 

ans 

3. For each problem, try simplifying the logarithm first, then taking the derivative. 

a. 

ans 

b. 

ans 

4. Use logarithm rules to explain why . 

Using logarithm rules, we have that . This has 

the same derivative as  since we are just adding a constant. 

ans 

5. Recall that  and  are inverse functions. This means that , and 

 (that is, the  and the  cancel out if you do one right after the other). This fact 

allows us to compute . 

a. Simplify 

ans 

b. Simplify . 

ans 

c. Simplify 

ans 

d. Simplify 
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ans 

e. Use part (d) to compute . 

ans 
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CHAPTER 31 

MULTIRULE MULTIRULE DERIVATIVES DERIVATIVES 

O kay, let’s talk about . If you’re thinking this looks like a product rule, but it 

also looks like a chain rule, you’re right. To compute this derivative, we need to do the chain 

rule and the product rule. This is because it is a multirule problem. Let’s do this example 

Example Multirule 

Problem Compute . 

The way I like to break this down is to consider a little rule and a big rule. In this case, the little 

rule is the chain rule problem . If we do this problem, we see that , , 

 and . So we have 

\begin{equation} 

\label{eq:little} 

\frac{d}{dx} \ e^{x^2 + x} = {\color{red} e^{x^2 + x} (2x + 1)}. 

\end{equation} 

Now we are ready to do the big rule, which is the product rule. At this point we go back to 

the original problem . For this product rule, we see , 

, . What is ? Why, that’s what we just computed in the equation above! So 

. Putting this all together with the product rule , we have 

\begin{align*} 

\frac{d}{dx} \ e^{x^2 + x} \sin(x) & = f g’ + g {\color{red} f’} \\ 

& = \boxed{e^{x^2 + x} \cos(x) + \sin(x) {\color{red} e^{x^2 + x} (2x + 1)}} . 

\end{align*} 

Example Multirule 



Problem Compute . 

little chain rule: 

Result: 

 

Big quotient rule (aka the whole problem):

Result: 
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CHAPTER 32 

HOMEWORK: HOMEWORK: MULTIRULE MULTIRULE DERIVATIVES DERIVATIVES 

1. Each of the problems below involves a combination of two of the following: product rule, 

quotient rule, chain rule. Give them a shot! 

Answer key note: the answers below are simplified, in some cases more so than I’d expect 

you to on a quiz or exam, but it is still good practice to try to simplify and see if you got the 

same thing I did. 

ans 

a. 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 



ans 

f. 

ans 

g. 

ans 

h. 

ans 
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CHAPTER 33 

ANTI-DERIVATIVES ANTI-DERIVATIVES 

W 
e’ll see in a future chapter that we will need to be able to be able to undo a derivative. That is, 

given the answer of a derivative problem, what is the original question? 

Given a function ,  is the anti-derivative of  if . We denote 

this by 

For now, just consider  and  to be notation that tells you to take an anti-derivative. 

Let us look at some examples with the power rule. The following is a table of derivative problems. 

Now let’s look at anti-derivatives. All we do is what was the original problem is now the answer, 

and what was the answer is now the original problem. 

There is one twist we have to watch out for: anti-derivatives are not unique. Consider the following 

derivatives: 



This would lead us to the following anti-derivatives 

So, suppose I ask the question “what is the anti-derivative of ?” There are many possible 

solutions, including , , , etc. However, all of these solutions are basically the same 

thing. To get around this problem, we say often use the notation . Here,  is called the constant 

of integration. In this form, the antiderivative is called an indefinite integral. 

If we are dealing with a polynomial, we know the derivative follows the power rule. With anti-

derivatives, it follows the inverse power rule: 

Note that this only works if . Can you see what goes wrong in the formula if ? 

We also have the rules of linearity work in reverse. So when taking anti-derivatives, you can just 

look at one term at a time, and the constant will stay during the anti-derivative process. 

Here are some examples. 

Example Antiderivative Examples 
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• Problem Find . 

Using the inverse power rule, we have . 

• Problem Find . 

The constant will “come along for the ride”, or not be affected by the anti-derivative 

process. Hence we see 

\begin{align*} 

\int 6 x^2 \ dx & = 6 \int x^2 \ dx \\ 

& = 6 \left( \frac{x^3}{3} + C \right) \\ 

& = 6 \frac{x^3}{3} + 6C \\ 

& = 2x^3 + 6C. 

\end{align*} 

Note that the  in the  part of the answer is not really necessary. What is important 

is we are indicating that you can add any constant of integration we’d like. Therefore, we 

will often replace the , and we have the answer 

In fact, often we will just wait to add the  until the end. In that case, we would arrive 

at an answer of , then we’d add the  at that stage, and get an answer of 

• Problem Find 

The  is a constant that does not affect the integration, so we see 

\begin{align*} 

\int \frac{1}{2} x^3 \ dx & = \frac{1}{2} \int x^3 \ dx \\ 
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& = \frac{1}{2} \left( \frac{x^4}{4} \right) \\ 

& = \boxed{\frac{x^4}{8} + C}. 

\end{align*} 

Notice we didn’t add the constant of integration until the last step, and that’s perfectly 

okay. 

• Problem Find 

In a sum, we can just treat each term separately. And the constants come along for the 

ride. 

\begin{align*} 

\int 6x^5 + 6x \ dx & = 6 \int x^5 \ dx + 6 \int x \ dx \\ 

& = 6 \left( \frac{x^6}{6} \right) + 6 \left(\frac{x^2}{2}\right) \\ 

& = \boxed{x^6 + 3x^2 + C}. 

\end{align*} 

• Problem Find . 

We treat each term separately. 

◦ . In this term, the  is a constant multiple, and the  doesn’t change, 

so we get 

◦ . Okay, a bit harder now. Notice the  is a constant multiple, so let’s 

take that out: . We recognize this as the derivative of , so the 

answer is 
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◦ . For this one, the division by  is the same a constant multiple of 

. We bring this outside and get: . We know that 

, so we know . This gives the 

final answer of 

Putting it altogether, we get a final answer of . Nice 

work! 
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CHAPTER 34 

HOMEWORK: HOMEWORK: ANTI-DERIVATIVES ANTI-DERIVATIVES 

1. Compute the following indefinite integrals. Don’t forget the constant of integration! 

a. 

ans 

b. 

ans 

c. 

 Wait! I mean . Oops! 

ans 

d. 

ans 

e. 

ans 

f. 

ans 





PART IV 

MORE DERIVATIVE INTUITION 





CHAPTER 35 

DERIVATIVES DERIVATIVES AND AND GRAPHS GRAPHS 

A 
s we’ve seen, one of the most important connections between a function and its derivative is 

that a positive derivative means the quantity is increasing, and a negative derivative means the quantity 

is decreasing. 

Example Increasing and Decreasing 

• Problem Outside temperature has a positive derivative from 3am to 3pm, and a 

negative derivative from 3pm to 3am. Draw a graph of this, and label each part of 

the graph as “increasing” or “decreasing”. 

With the positive derivative from 3am to 3pm, this should go up and be labeled 

“increasing”. From 3pm to 3am, the graph is going down and labeled “decreasing”. 

midnight 3am 3pm 3am

In
cr

ea
si

ng

Decreasing

At the interface between increasing and decreasing, at 3pm, is when the temperature is the highest. 



This is the key to one of the most useful applications of calculus: optimization! Optimization is either 

finding out when a quantity is maximized, or as high as possible, or finding out when a quantity is 

minimized, or as low as possible. Often this is at the interface of increasing and decreasing, and thus 

at the where a function goes from positive derivative to negative derivative. Hence, one of the most 

important maxims of calculus: optimization happens when the derivative is zero! We will come back to this 

in a future section. 

For now, using this idea of when the derivative is positive, negative, or zero, we can draw a rough 

sketch of the derivative based on the graph of a function. Let’s see an example 

Example Derivative sketching 

Problem Sketch the derivative of the following function. 

When sketching the derivative, keep this idea in mind: slopes become -values. First, let’s mark 

where the derivative is zero: 

po
si

tiv
e

negative po
si

tiv
e
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These are the places that, in the derivative graph, have zero for the -value. That means these are 

the -intercepts! 

Now let’s mark where the derivative is positive, and where it is negative. 

po
si

tiv
e

negative po
si

tiv
e

Finally, we can use this as a rough guide for a sketch, again keeping in mind slope becomes 

-values. Here, the derivative is in black, while the original function is in grey. 

po
si

tiv
e

negative po
si

tiv
e

Let’s see another example. 

Example Derivative Sketching 2 

Problem Sketch the derivative 
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In this case, the graph is always going down, so the derivative is always negative. That doesn’t 

really tell you a lot about what the derivative graph looks like. However, there is a special point 

called an inflection point right here: 

inflection point

It’s not where the slope is zero, but it is where the slope gets the closest to zero. Everywhere else 

the slope is more negative than at the inflection point. So in the derivative graph this becomes a 

maximum or highest point, like this: 
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inflection point

As long as that inflection point is the highest point (but still a negative -value due to the negative 

slope of the original graph), that’s about the best you can do on that one. 

INFORMAL  CALCULUS 155





CHAPTER 36 

HOMEWORK: HOMEWORK: DERIVATIVE DERIVATIVE GRAPHS GRAPHS 

1. For each graph, sketch the derivative graph (you can sketch the derivative on the same axes 

as the problem if you prefer) 

a. 

https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/pgf10.svg


b. 
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c. 
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d. 
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e. 
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CHAPTER 37 

SECOND SECOND DERIVATIVES DERIVATIVES AND AND INTERPRETING INTERPRETING THE THE DERIVATIVE DERIVATIVE 

W 
e understand velocity versus position at this point, but what about the derivative of other 

changing quantities? What does it mean? Let’s look at an example. 

Example Glacial Loss 

Problem Let  be the mass in metric tonnes of a glacier over a given time , where  is 

measured in years. What do you think the graph of  looks like? Given global warming, 

it’s probably going down, like this: 

time (years)

M(t)
(metric tonnes)

Question: What is the derivative measuring now? What would the graph of the derivative 

look like? 

Answers: Good questions! Just like the derivative of position is velocity, or how fast the position 

is changing, the derivative of  is going to be how fast the mass of the glacier is changing. In 

this case, it is how fast it is melting. 

We can automatically assign units to the derivative. Since the original graph is metric tonnes 

on the -axis, and years on the -axis, we know the unit of the derivative (unless we want to 



convert) is going to be metric tonnes per year. We might then talk about the derivative being 

. 

Notice I assumed the derivative was negative. Why did I do that? That is because the graph is 

going down, and the glacier is losing mass. 

Note further that it isn’t just going down like a line going down. It’s a curve downward. What 

does this mean for the derivative? Well, the derivative starts negative since it’s going down, and 

continues to be negative as it goes down. But it goes down faster and faster as you move to the 

right — that means the derivative is getting more and more negative. Like this: 

time (years)

M'(t)
metric tonnes

year ))

So we can see that this derivative is negative, but it’s worse than that — it’s negative and going 

down. That’s not good news for the glacier. Looking at whether the derivative is going up or 

down is known as the second derivative. We will see in the next section this is easy to calculate. 

As we saw in the above example, sometimes we need to repeat the process of taking derivatives. This 

gives the second derivative, third derivative, and so on. The notation is 

You can also take three, four, or more derivatives. Instead of writing several primes, we write 

for the fourth derivative,  for the fifth derivative, and so on. Let’s do a couple of examples. 

Example Multiple Derivatives 

Problem Let . Find 
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1. 

2. 

3. 

4. 

For (1), we use the power rule and see that . 

For (2), we use the power rule again applied to . So we have 

For (3), we take the derivative of . This is . 

For (4), we take the derivative of  and that is . 

Example Multiple Derivatives again 

Problem Find . 

To get a second derivative, we first need to take one derivative. We see the derivative of  is 

. We then take the derivative again, and we see 

\begin{align*} 

\frac{d^2}{dx^2} \ln(x) & = \frac{d}{dx} \frac{1}{x} \\ 

& = \frac{d}{dx} x^{-1} \\ 

& = -1 x^{-2} \\ 

& = \boxed{-\frac{1}{x^2}} 

\end{align*} 

Example More derivatives with 

Problem Find the first four derivatives of . 
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Here, we see that , , , and 

. Hence, we start repeating answers after we take four derivatives! 
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CHAPTER 38 

HOMEWORK: HOMEWORK: SECOND SECOND DERIVATIVES DERIVATIVES AND AND INTERPRETING INTERPRETING THE THE 
DERIVATIVE DERIVATIVE 

1. Given each , describe in one sentence the meaning of . 

a. Let  be the distance (in miles) an astronaut is from the surface of the earth as he 

blasts off towards space. Here  is measured in hours. 

 is the speed of the astronaut in miles per hour 

ans 

b. Let  be the number of gallons of diesel gasoline in the tank of a truck, with 

measured in hours. 

 is how fast fuel is being burned, in gallons per minute. It could also represent 

how fast the fuel is being filled up at a gas station. 

ans 

c. Let  be the concentration of NaCl in parts per million within the cytoplasm of a 

cell. Here,  is measured in minutes. 

 is the rate the concentration of NaCl is increasing in parts per million per 

minute. 

ans 

d. Let  be the speed of a runner (in feet per second), and let  be measured in 

seconds. 

 is the acceleration of the runner, or the rate at which the runner’s speed is 

increasing in (feet per second) per second. 

ans 

e. Let  be the rate (in dollars per hour) that you are paid, where  is measured in 

months. 

 is like how fast are you getting raises, measured in (dollars per hour) per 

month. 

ans 



2. For each of the functions below, compute the derivative twice. That is, compute , then 

take the derivative of  to find . 

a. 

, 

ans 

b. . 

, 

ans 

c. 

ans 

d. 

, 

ans 

e. 

, 

ans 

3. For each graph, circle any inflection points (if any). Label each region between the inflection 

points has having either a positive or negative second derivative. 
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a. 
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ans 

4. A river bank is eroding. Let  be the metric tonnes of soil and rock material on day . 

Suppose  (this model is valid from  to ) . 
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a. What is  measuring? What are the correct units? 

How quickly soil and rock are being lost due to erosion in metric tonnes per day. 

ans 

b. Sketch the derivative. 

c. Find the derivative 

ans 

d. How quickly is material being lost on day ? How quickly is material being lost 

on day ? 

 metric tons per day on day ,  metric tons per day on day . 

ans 

5. The stock price for Math Nerds, Inc, over the course of an 8 hour trading day (  to 

) is modeled by  (  is measured in dollars). 
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a. What is  measuring? What is  measuring? State the correct units for each. 

 is the rate of change of the stock price in dollars per hour.  is how 

quickly the stock price rate is speeding up or slowing down, measured in dollars per 

hour

ans 

b. Sketch the graph of  and . 

c. Compute  and . 

, . 

ans 

d. How quickly is the stock gaining in price at ? How quickly is it losing value at 

? 

Gaining at 5.6 dollars per hour at , but losing at a rate of  dollars per 

hour at 

ans 

e. At , the stock price is clearly growing. But is growth speeding up or slowing 

down? How can you use the formula for , , or  to find out? 

We can plug  into , to get an answer of  dollars per hour per hour, 

which means growth is slowing down. 

ans 
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6. A tank has  liters of water at time  measured in minutes, where 

 (this model is valid  to ). 

a. Sketch the graphs of  and . 

b. What is  measuring? What is the meaning of ? Give the correct units. 

Imagine water is leaking out of a hole.  is indirectly measuring the size of that 

hole, since it is measuring how quickly water is being lost in liters per minute. 

would relate to how quickly the hole is opening or closing, thus measuring how fast 

the rate is changing in liters per minute per minute. 

ans 
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CHAPTER 39 

OPTIMIZATION OPTIMIZATION 

S 
ometimes we have a function and we just really want to know what its high point or low point 

is in terms of -value. The high point is called a maximum, and the low point is called a 

minimum. For most functions, these points occur when the derivative is zero or undefined (we 

talked about why this is briefly in a previous section). 

Example Optimization 

Problem The height of a baseball follows the function , where 

is measured in meters and  is measured in seconds.. What value of  maximizes the height? 

We will follow the maxim “optimization happens when the derivative is zero”. First we find the 

derivative using the power rule . Then we set this equal to zero, so we solve 

\begin{align*} 

-10t + 20 & = 0 \\ 

-10t & = – 20 \\ 

t & = \boxed{2} 

\end{align*} 

Hence, the height is maximized when the time is equal to  seconds. At this point, the height of 

the ball is  meters. Here’s a rough 

sketch based on what we know about this function: 



t

h(t)
30

30

10

1 2 3 4

Let’s do anther optimization example: 

Example Optimization 2 

Problem The cost per item of producing Super Hero Action Figures, if  are produced, is 

given by 

At what value  is the cost per item minimized? What is the cost at this value of ? 

To solve this problem, we find : 

We then set this equal to zero and solve: 

\begin{align*} 

-500x^{-2} + 0.001 & = 0 \\ 

-500x^{-2} & = -0.001 \\ 

x^{-2} & = 0.000002 \\ 

1 & = 0.000002 x^2 \\ 
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500,000 & = x^2 \\ 

\sqrt{500,000} & = x \approx \boxed{707.10} 

\end{align*} 

So we see about  action figures is the best number to choose. The cost at this point (by 

plugging  into the original equation) is just . Not too bad! 
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CHAPTER 40 

HOMEWORK: HOMEWORK: OPTIMIZATION OPTIMIZATION 

1. Samantha has some whiskey at a party, and (being a science and math geek) estimates her 

blood alcohol content (BAC) follows the function: 

where  is measured in hours after her first drink. Graph this function, and determine the 

following using a derivative: 

a. How quickly is her BAC increasing (or decreasing) 15 minutes after her first drink? 

,  (grams per dL per hour). 

ans 

b. How quickly is her BAC increasing (or decreasing) 1 hour after her first drink? 

 change 

ans 

c. How quickly is her BAC increasing (or decreasing) 2 hours after her first drink? 

 grams per dL per hour 

ans 

2. Graph each function over the given interval. Use calculus to determine the location of all 

global and local mins and maxes. 

a.  on the interval . 

Local and Global Mins: , Local and global max: 

ans 

b.  on the interval . 

Local min: , global and local min: , local and global max: 

ans 

c.  on the interval . 

Local and global maximum at  , Local min: , local and 

global minimum: , local maximum: 



ans 

d.  on the interval . 

Local max at , local min at , global max at , global min at 

. 

ans 

e.  on the interval . 

Local max at , global min at , global max at 

ans 

f.  on the interval . 

Local min at , local max at , local min at , local max at 

ans 

3. Using a chemotherapy drug on a petri-dish of cancer cells, it is found that  percent 

more of the cancer cells are killed using  milligrams of drug per square centimeter than 

healthy cells, where  ranges from  to . It is thought 

For what value of  is  maximized? 

ans 

4. Bananas as we know them may be doomed! Suppose the fungus Tropical Race 4 mentioned 

in the article is killing off bananas on an island in Jamaica. The number of viable banana 

farms starts at , with  being forced to close per year. But new banana farms are 

according to the function  with new varieties immune to the fungus (  measured in 

years). So the total number of viable banana farms is 

on the interval . At what point is the number of banana farms minimized? What is 

the number of viable banana farms at this point? 

This function is minimized at  with the number of banana farms at 

ans 

5. The area of a rectangle is length times width. A farmer needs to build a pig pen against the 

side of the barn using  meters of fence. What is the maximum amount of area he can 

enclose? 
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Barn

pig penlength

width Fencing

6. Watch the KhanAcademy videos on maximizing the area of a box: 

Optimizing Box Volume Graphically and 

Optimizing Box Volume Analytically 

7. An open-topped box is formed by removing the square corners of sidelength  off of a  in 

by  in piece of cardboard, and folding each side up. What value of  maximizes the 

volume of the box? 

ans 

8. The height and radius of a cone together add to  inches. What value of the radius 

maximizes the volume? The volume is given by . 

 in 

ans 
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CHAPTER 41 

DERIVATIVES DERIVATIVES IN IN SPACE SPACE 

S 
o far when we have thought about applying derivatives, we’ve always thought in terms of time. 

So we’ve focused on rates like meters per second, degrees Celsius per second, liters per minute, 

and so on, everything per unit time. However, we don’t always get derivatives with respect to 

time. 

For example, consider this box: 

And let’s consider the temperature of the box at every point. We can show this using red to mean hot 

and blue to mean cold: 

Note that the temperature changes, but not in time. Instead, the temperature changes as you move 

down the box — that is, the temperature changes in space. We can show the same thing in the graph: 



distance from the back (cm)

Te
m

p 
(C

)

25

50

75

100

5 1510 20 25 30 35 40

And just as before, the slope of this graph at any point is the derivative. What are the units? Well, they 

would be . 

Let’s continue with this example. 

Example Temp in a box 

Problem Suppose the equation  described the temperature, in 

Celsius, of the box from the previous diagrams at a distance of  centimeters from the back. 

1. What is the derivative of the temperature halfway down the box? 

2. What is the derivative of the temperature three-quarters of the way down the box? 

3. Let’s go back to thinking about time. According to the heat equation, a point in 

space will tend to get hotter if the second derivative in space is positive, and colder 

if the second derivative in space is negative. Based on this statement, is this box 

going to get hotter or colder? What does that mean regarding its derivative in time? 

1. We can see from the previous graph that the box is  centimeters long, so half way 

would be  cm. We know . So if we just plug in 
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, we get 

. Again, the units are . So that means for every cm 

you travel, the box gets  C colder. 

2. Now we just plug in  into the derivative we already found , and 

we see . This means, at this point in the box, the box is 

getting colder faster. You can see this in the graph as well. 

3. To answer this question, we need the second derivative . This is just the 

derivative of , and so we just drop the  and get . Since 

the second derivative with respect to space is negative, the heat equation says the first 

derivative with respect to time is also negative. So if we just leave this box alone, it 

would tend to get colder. That is, the  is negative as well. 
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CHAPTER 42 

HOMEWORK: HOMEWORK: DERIVATIVES DERIVATIVES IN IN SPACE SPACE 

1. We’ve talked a lot about how derivatives measure slope, but literal slope on a topographic 

map is a good example of derivatives in space. Consider this picture: 

src: usgs.gov’s topoview 

The thinnest contours on the map represent a height gain of  feet, and the slightly thicker 

contours are a height gain of  feet. Each thick red line has a length of roughly  feet. 

What is the slope of the mountain at the thick red lines? 

2. Consider the following thermal image of wolves howling: 



src: usgs.gov 

a. Why is the eyes and mouth much hotter than other parts of the wolves, like the 

neck? 

b. According to the heat equation, things get colder or warmer depending on the 

second derivative with respect to space. Assuming these wolves are a constant 

temperature, that means the second derivative of temperature with respect to space 

is zero. What does it mean for the first derivative if the second derivative is zero? 

What does that mean for the temperature of the wolves at different places on its 

body where the fur is thinner or thicker? 

3. Consider a cylinder filled with particles of some important nutrient (say oxygen). Suppose 

the concentration isn’t constant, but instead looks something like this: 

The oxygen particles will tend to move from areas of high concentration to areas of low 

concentration, a process called diffusion. Diffusion is extremely important in biology, since 

that is how many cells get their nutrients. 

a. Based on the diagram of the cylinder, draw a rough sketch of the concentration 

graph. On the -axis should be concentration  (molecules per cm ), and on the 

-axis should be distance  from the back of the cylinder measured in cm. 
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b. Based on your graph, estimate the slope at two points of your choosing. The 

notation for your answers would be . 

c. The rate at which the particles move in diffusion is called flux. It follows Fick’s law: 

Here, flux is how fast the particles are moving,  is the diffusion coefficient (a 

constant), and  is what we found in the previous part. Why is there a negative in 

the equation? Explain it in words, and talk about your graph and your answers for 

 from the previous part. 
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PART V 

DIFFERENTIAL EQUATIONS 





CHAPTER 43 

RECURRANCE RECURRANCE RELATIONS RELATIONS 

A s we’ll see in the next section, a differential equation looks like this: . What I 

want to first talk about though are recurrence relations. Let me introduce these with a magic 

trick. 

Example Magic Trick 

Pick a number between 1 and 100, and I’m going to guess it. But not before we mix it up a bit. 

1. Take your number and divide by five, and round to the nearest whole number. 

2. Then add  to the result. 

3. Repeat steps (1) and (2) twice more, for a total of three iterations. 

Done? I bet you ended with the number 45. Are you amazed? 

This trick is based off the recurrence relation . Think of  as the previous value, 

and  as the new value. How do you get from one to another? Well, ignoring the rounding, you 

divide by  and add , and that’s exactly what  is telling you to do. In order to use 

such a equation, we need an initial value or . In the trick, this was the original number you picked. 

Let’s create a graph with the initial value : 



As you can see, this recurrence relation quickly converges to  by the time . That’s 

why the trick works! If we started somewhere else, the graph looks much the same and it converges 

to 45 anyway. 

However, recurrence relations are useful for more than just magic tricks. 

Example Logging 

Problem Let  be the biomass of a forest in year . Suppose it expands by  each year, 

but also loses  metric tonnes to logging. What might be a recurrence relation that 

explains this situation? 

Well, since this is a recurrence relation, we want to relate the quantity under consideration,  to 

its value the next year, which is . So it will look something like 

but those aren’t the right values yet — just want to have some idea of where this is going. 

The first thing we need to encode is the expansion by . We can take , or  and 

multiply by  like so: . But the old forest is still there (except for the logging, which 

we’ll worry about in a second), so let’s add  as well: . If we factor out , we get 

\begin{align*} 

0.01 h_t + h_t & = h_t(0.01 + 1) \\ 

& = h_t(1.01) \\ 

198 TYLER  SEACREST



& = 1.01 h_t 

\end{align*} 

This is the growth by . What about that logging? Well, that’s not a percent change, so we’ll just 

subtract the  to represent the loss of biomass. So our final recurrence relation is–> 

Problem What happens to the forest in the long run according to your recurrence relation? 

Well, let’s play with it a bit and see what happens. But before we can do that, we need an initial 

value . Let’s guess something. Since we are losing  a year, we’ll need a much bigger 

number than . Let’s just guess that  is  metric tonnes. 

Now we can compute several  values: 

\begin{align*} 

h_0 & = 50000 \\ 

h_1 & = 1.01(50000)-2000 = 48500 \\ 

h_2 & = 1.01(48500) – 2000 = 46985 \\ 

h_3 & = 1.01(46985) – 2000 \approx 45500 \\ 

\end{align*} 

We can see that the biomass is going down — not a good sign for the forest. We can speed these 

calculations up quite a bit in excel. If you do that, you can see that the forest will be totally gone 

in by , in less than thirty years. However, that’s not a full answer, since it may depend on how 

much biomass we start with. Suppose it’s a larger forest with . Then we see 

\begin{align*} 

h_0 & = 300000 \\ 

h_1 & = 1.01(300000)-2000 = 301000 \\ 

h_2 & = 1.01(301000) – 2000 = 302010 \\ 

h_3 & = 1.01(302010) – 2000 \approx 303000 \\ 

\end{align*} 

And the forest just grows from there. 

Let’s see an even more complicated example. 

Example Life Cycle of Cutthroat Trout 

Problem Recurrence relations can model the life of plant and animals species as they move 

from one stage of life to the next. For example, let , , , , ,  be the amount of 

cutthroat trout (oncorhynchus clarkii) in southwest Montana of age , , , , , and  or 

more respectively. Here,  is a measured in years starting from some . Then according 

to https://compadre-db.org/Species/47501, these quantities follow the recurrence relation 

\begin{align*} 
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f^0_{t+1} & = 5.23 f^3_t + 18.0 f^4_t + 24.55 f^{5+}_t \\ 

f^1_{t+1} & = 0.277 f^0_t \\ 

f^2_{t+1} & = 0.3405 f^1_t \\ 

f^3_{t+1} & = 0.4675 f^2_t \\ 

f^4_{t+1} & = 0.4675 f^3_t \\ 

f^{5+}_{t+1} & = 0.4675 f^4_t + 0.4675 f^{5+}_t \\ 

\end{align*} 

Explain what each number in these recurrence relations mean. 

My goodness, that’s a complicated mess of symbols. But with a little patience, we can figure it out 

I think. 

Let’s start with the line . We know from the problem statement that  are 

the trout of age 0 at year . The quantity  is the amount of one year old trout at year 

. This equation is relating the number of  year olds with the number of  year olds a year later. 

What it is saying is  times the number of zero year olds gives you the number of one year 

olds a year later. In other words, this equation is giving a  survival rate from age zero to 

age one. 

From here, we can now easily decode several other equations.  gives a 

 survival rate from age one to age two. The similar we find  survival rate 

from age two to age three, and the same rate from age three to age four. The equation 

 is a bit more complicated, since trout of age 5+ come from 

the age 4 trout, but also the age 5+ stay within that category, so there are two ways to get there. 

Both of these involve a  survival rate. 

Notice these survival rates are pretty low by human standards. However, there is some good news 

for the species: look at the first equation . What do you 

make of this? That’s right — these are the new baby trout! As you can see, there are a lot of new 

babies that help balance the low survival rates we noticed before. In particular, each three year 

old produces roughly 5 new offspring, each four year old produces on average 18 new offspring, 

and an average 5+ year old produces almost 25 offspring. 

Problem Starting with , , , , , and 

, create a graph that shows how the population of the cutthroat trout changes 

over time. What does the graph show? 

I created this graph in Excel (see the file “cutthroat-life-cycle.xlsx” for the formulas and data): 
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And here are just the last four stages to get a better look at these ones: 
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As we can see, the population seems to be fairly stable. One thing that stands out to me is how 

many age zero and age one fish there are compared to other groups. 
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CHAPTER 44 

HOMEWORK: HOMEWORK: RECURRENCE RECURRENCE RELATIONS RELATIONS 

1. For the logging example from previous section, for initial forest size  is the biomass 

stable? That is, the biomass of the forest is not changing from year to year (this is known as a 

fixed point). 

2. Find a species of your choosing on the website https://compadre-db.com/ExploreDatabase, 

like we did for the cutthroat trout in the previous section. Use a spreadsheet program to see 

what happens to the population over time. What do you notice? 

https://compadre-db.com/ExploreDatabase




CHAPTER 45 

INTRODUCTION INTRODUCTION TO TO DIFFERENTIAL DIFFERENTIAL EQUATIONS EQUATIONS 

S 
ometimes we don’t quite know what kind of function we are dealing with exactly, but we know 

some basic things about its derivative. For example, consider how many people live in a town 

or city. We’ll call this . One general principle that often holds true for population is that 

the rate it is growing is proportional to the size of the population. That is, the bigger the city, the faster 

the growth. This is just saying in terms of raw numbers, a city like Hong Kong has the ability to add 

people much faster than Dillon, Montana, since Hong Kong is a much bigger city. Now, this doesn’t 

have to hold: some big cities actually shrink, while some small towns explode in population overnight. 

But on average, this is true. It follows the equation 

The left hand side represents how fast  is growing, and the right hand side represents some 

fraction of . The value  is called the growth rate. This is an example of a differential equation. 

A differential equation is an equation relating a unknown function and its derivatives. Another way to 

write the same differential equation is to use Newton’s notation. 

Again, this is just saying how fast  is growing is equal to some constant times the size of . 

We’ll learn how to “solve” an differential equation later on. But for now, note that 

solves this differential equation. Why? We’ll, note that  by the chain rule. Hence, 

we can verify that  solves this differential equation by using substitution. 

\begin{align*} 

{\color{blue} P'(t)} & = 0.03 \cdot {\color{red} P(t)} \\ 

({\color{blue} 0.03 e^{0.03t}}) & = 0.03 \cdot ({\color{red} e^{0.03 t}}) \\ 

0.03 e^{0.03t} & = 0.03 e^{0.03t} 

\end{align*} 

Since we get the same thing on both sides via substitution, we know that the differential equation is 

verified! What does this mean? Well, this says that population follows the exponential function 

. This means populations eventually start to grow extremely fast. 



While exponential functions grow bigger and bigger forever, in practice, population growth will 

eventually slow or even stop due to geographic or other constraints. No exponential function lasts forever 

in real life! 

Let’s see a couple other examples of creating differential equations. 

Example Creating Differential Equations 

• Problem Let  be the earnings of a large company, measured in millions of 

dollars. This company’s growth in earnings is 0.07 times their current earnings. 

What is a differential equation that models this situation? 

We see that growth in earnings is the same thing as derivative. Hence  is the 

growth in earnings, and this is equal to  times their current earnings, so 

. 

• Problem The growth of a function is  less than  times the value of the 

function. What is the differential equation now? 

We see that this can be translated as . 
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Here are some examples of verifying a given solution is correct. 

Example 

Problem Verify that  solves the differential equation: 

Here, we see  is given, and we can compute this by taking the derivative of 

each piece. 

\begin{align*} 

{\color{blue} f'(x)} & {\color{blue} = \frac{d}{dx} e^x + x + 1} \\ 

& {\color{blue} = e^x + 1} \ 

\end{align*} 

We can then verify the differential equation using subsitution. 

\begin{align*} 

{\color{blue} f'(x)} & = {\color{red} f(x)} – x \\ 

{\color{blue} e^x + 1} & = {\color{red} (e^x + x + 1)} – x \\ 

e^x + 1 & = e^x + 1 

\end{align*} 

Example 

Problem Verify that  solves the differential equation: 

Here, we see  is given, and we can compute using the chain rule 

\begin{align*} 

{\color{blue} q'(x)} & {\color{blue} = \frac{d}{dx} \sqrt{2x}} \\ 

& {\color{blue} = \frac{d}{dx} (2x)^{1/2}} \\ 

& {\color{blue} = \frac{1}{2} (2x)^{-1/2} \cdot 2} \\ 

& {\color{blue} = (2x)^{-1/2}} \\ 

& {\color{blue} = \frac{1}{\sqrt{2x}}} 

\end{align*} 

We can then verify the differential equation using substitution. 

\begin{align*} 

{\color{blue} q'(x)} & = \frac{1}{{\color{red} q(x)}} \\ 

\left( {\color{blue} \frac{1}{\sqrt{2x}}} \right) & = \frac{1}{({\color{red} \sqrt{2x}})} \\ 

\frac{1}{\sqrt{2x}} & = \frac{1}{\sqrt{2x}} 

\end{align*} 
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CHAPTER 46 

HOMEWORK: HOMEWORK: INTRODUCTION INTRODUCTION TO TO DIFFERENTIAL DIFFERENTIAL EQUATIONS EQUATIONS 

1. Describe as best you can at this point in your own words what a differential equation is. 

2. Following earnings example from the previous chapter, if the number of employees in a 

company is growing at a rate of  times the number of employees, what is a differential 

equation that describes this situation? 

. 

ans 

3. Verify the function  solves the differential equation: 

We see 

\begin{align*} 

f'(x) & = f(x) + x \\ 

e^x – 1 & = (e^x – x – 1) + x \\ 

e^x – 1 & = e^x – 1 

\end{align*} 

as desired. 

ans 

4. Verify the function  satisfies the differential equation: 

We see 

\begin{align*} 

f'(x) & = \frac{2}{f(x)} \\ 

x^{-1/2} & = \frac{2}{2 \sqrt{x}} \\ 

\frac{1}{\sqrt{x}} & = \frac{1}{\sqrt{x}} 

\end{align*} 

as desired. 

ans 

5. For each differential equation, find  for the given value of , or state there is not enough 

information. 



a. Suppose  and . Find . 

ans 

b. Suppose , and . Find . 

ans 

c. Suppose  and . Find . 

ans 

d. Suppose  and . Find . 

Not enough information. 

ans 

6. For each relationship between the value of a function and its derivative, write down a 

differential equation. For example, if I said “a function is growing at a rate equal to seven 

times the value of the function” you’d write down . 

a. A function is growing at a rate equal to twice the function value. 

ans 

b. A function is growing at a rate equal to the square root of the function value. 

ans 

c. A function is growing at a rate equal to  times the function value. 

ans 

d. A function is accelerating at a rate equal to the sum of the function value and how 

quickly the function is growing. 

. 

ans 

7. Verify that the given solution to each differential equation is correct. 

a. Differential equation , solution . 

\begin{align*} 

f'(t) & = f(t) + 3 \\ 

\frac{d}{dt}(3e^t – 3) & = (3e^t – 3) + 3 \\ 
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3e^t & = 3e^t 

\end{align*} 

ans 

b. Differential equation , solution . 

\begin{align*} 

f'(t) & = 4 \sqrt{f(t)} \\ 

\frac{d}{dt}(4 t^2) & = 4 \sqrt{4 t^2} \\ 

8t & = 4(2t) \\ 

8t & = 8t. 

\end{align*} 

ans 

c. Differential equation , solution . 

\begin{align*} 

f'(t) & = (f(t))^2 \\ 

\frac{d}{dt} (-t^{-1}) & = (-t^{-1})^2 \\ 

t^{-2} & = t^{-2} 

\end{align*} 

ans 

d. Differential equation , solution . 

\begin{align*} 

f'(t) & = e^{-f(t)} \\ 

\frac{d}{dt} \ln(t) & = e^{-\ln(t)} \\ 

\frac{1}{t} & = \frac{1}{e^{\ln(t)}} \\ 

\frac{1}{t} & = \frac{1}{t} 

\end{align*} 

ans 
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CHAPTER 47 

UNDERSTANDING UNDERSTANDING DIFFERENTIAL DIFFERENTIAL EQUATIONS EQUATIONS 

W 
e will now outline a process one can follow to make sense of a difficult or complicated 

differential equation: 

1. Understand what each variable is measuring with correct units. 

2. Write down what relationship the differential equation is describing in common, no-

nonsense language. 

3. Explain why those relationships seem to make sense. 

Let’s do an example with the population equation. 

Example Simple Population Growth 

Problem A population of snakes is declining according to the model , 

where  is number of snakes, and  is measured in years. Follow the steps above to 

explain this differential equation. 

1. Understand what each variable is measuring with correct units. 

As given in the problem,  is number of snakes at time ,  is measured in years. Since 

 is a rate of change of the snakes, it is snakes lost per year. 

2. Write down what relationship the differential equation is describing in common, no-nonsense 

language. 

The population of snakes is decreasing, because of the negative sign, in proportion to the 

number of snakes. Hence, a good answer here is “The more snakes you have, the more 

snakes you lose.” 

3. Explain why those relationships seem to make sense. 

Of course we don’t know why the snakes are dying off, but it makes sense that the more 

snakes you have the more you lose, since there are more snakes with the potential to die. 

The next example involves a system of differential equations which makes it a bit more complicated. 

A system of differential equations is just like a system of equations: you now have perhaps several 



unknown functions, and you want to find all the unknown functions so that all the equations are true 

at the same time. 

Example Wolves and Deer 

Problem Let  be the population of wolves and  be the population of deer, with 

measured in years. They satisfy the differential equation 

\begin{align*} 

D'(t) & = -0.1(W(t) – 30) \\ 

W'(t) & = 0.1(D(t) – 300). 

\end{align*} 

Explain this differential equation. 

1. Understand what each variable is measuring with correct units. 

As given in the problem,  is the number of deer at a given time,  the number 

of wolves, and  is measured in years.  is how fast the deer population is changing 

in deer per year, and  the same thing for wolves measured in wolves per year. 

2. Write down what relationship the differential equation is describing in common, no-nonsense 

language. 

We see that a wolf population larger than  makes the deer population go down. A deer 

population above 300 makes the wolf population go up. 

3. Explain why those relationships seem to make sense. 

These relationships make sense since if we have a lot of wolves, they hunt the deer and 

the population of deer goes down. If we have a lot of deer, there is a lot of food for the 

wolves, so the wolf population goes up. 

Let’s look at a rocket equation. 

Example Rocket Equation 

Problem A rocket that is blasting off has height  in meters and has mass of fuel  in 

kg (here,  is measured in seconds). These quantities follow the differential equations 

\begin{align*} 

h”(t) & = \frac{-10000m'(t)}{50 + m(t)} – 9.8\\ 

m'(t) & = -0.1 

\end{align*} 

Use the steps to explain this differential equation. 
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1. Understand what each variable is measuring with correct units. 

As given in the problem,  is the height measured in meters,  is the mass of fuel 

in kg, and  is time measured in seconds. We also have  would be the velocity in the 

upward direction in m/s, and  is acceleration upward of the rocket in m/s . 

is the change in mass of rocket fuel in kg/s. 

2. Write down what relationship the differential equation is describing in common, no-nonsense 

language. 

We see that acceleration, , is related to . That means as we lose 

rocket fuel, we gain faster acceleration. We also have  in the bottom of the 

fraction — that means we gain acceleration more slowly since we are dividing by this 

quantity. We also lose 9.8 additional units of acceleration. 

The second equation is much simpler — it just says we are losing rocket fuel at a rate 

of 0.1 kg/s. 

3. Explain why those relationships seem to make sense. 

This is more complicated, but these relationships do make sense. For example, the 9.8 

units of acceleration lost are due to gravity. It makes sense that we gain acceleration as we 

lose fuel, since we burn fuel to make the rocket go faster. Finally, dividing by 

is to account for the fact that the heavier the rocket is, the slower it will accelerate. 
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CHAPTER 48 

HOMEWORK: HOMEWORK: UNDERSTANDING UNDERSTANDING DIFFERENTIAL DIFFERENTIAL EQUATIONS EQUATIONS 

1. For each differential equation below, do the following steps. 

◦ Describe what each variable or function is measuring (if possible at this stage), and 

give correct units. 

◦ Describe what the equation is saying. Use phrasing like “If such-and-such is big, than 

such-and-such grows faster.” 

◦ Explain why the relationships from the previous bullet point makes sense in terms of 

the story or physical situation. 

a. Let  be the temperature of a cooling object in degrees Celsius, and let  be 

measured in seconds. Newton’s law of cooling state that 

. Here  is the ambient air temperature. 

b. Let  be the height of a mountain measured in meters over a long period of time 

(  measured in millions of years). Suppose  satisfies the differential equation 

. 

c. Let  be the fish population in a lake being harvested at rate  fish per year. 

Suppose  satisfies the differential equation 

. Here,  represents the birth rate, 

 the natural death rate, and  the harvest rate. 

2. Skim through the article “Campus drinking: an epidemiological model” by J. L. Manthey, A. 

Y. Aidoo & K. Y. Ward. You’re not going to understand the whole article — that’s okay! But 

let’s try to figure out bits and pieces of it. 

Here is their first differential equation from secion 2 of the article. 

$$ 

\frac{dN}{dt} = \eta – \eta N – \alpha N P + \beta S + \epsilon P 

$$ 

1. What does the variables N, S, and P represent? 

2. In the first differential equation, what terms represent college students transitioning 

https://www.tandfonline.com/doi/full/10.1080/17513750801911169


to drinking more? Which one represent college students transitioning to drinking 

less? 

3. What is a main conclusion of the article? 
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CHAPTER 49 

INITIAL INITIAL VALUE VALUE PROBLEMS PROBLEMS 

O 
ften a differential equation has many solutions. Consider the population equation 

We saw in the last section that  solves this differential equation. However, 

 also solves this differential equation: 

\begin{align*} 

P'(t) & = 73 e^{0.03t} \cdot 0.03 \\ 

& = 0.03 \cdot 73 e^{0.03t} \\ 

& = 0.03 P(t) 

\end{align*} 

So  and  both solve the differential equation . In fact, any function 

of the form  solves this differential equation.  is called the general solution, and 

 is called a free parameter, since it can be anything that we like. However, sometimes there are certain 

conditions called initial conditions which specify what the free parameters must be (in which case it 

wouldn’t be very free!). A differential equation with given initial conditions is called an initial value 

problem. I won’t ask you to solve the differential equation fully in this book, but solving for the free 

parameters is very doable. 

Example Initial Value Problem 

Problem Solve  where . (Hint: The general solution is 

). 

In this case, we just need to specify what , since it is the only free parameter. We see that 

 and . Therefore, . Anything to the zero is , 

hence we see , so . So the final answer is . 

Example Another Initial Value Problem 



Problem Verify  satisfies the differential equation . Then 

solve for the free parameter if . 

We see that , and we can compute  using the chain rule: 

. But notice this exactly fits the differential equation: 

\begin{align*} 

M'(t) & = t M(t) \\ 

(t A e^{t^2/2}) & = t (A e^{t^2/2}) \\ 

t A e^{t^2/2} & = t A e^{t^2/2} 

\end{align*} 

Thus we have verified the solution to the differential equation. To find the free parameter , we 

use , and see that , and hence , and so . This 

completes the verification and solving for the free parameter. 
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CHAPTER 50 

HOMEWORK: HOMEWORK: INITIAL INITIAL VALUE VALUE PROBLEMS PROBLEMS 

1. Verify that the given solution to each differential equation is correct, and solve for the free 

parameter. 

a. Differential equation , solution , . 

\begin{align*} 

f'(t) & = f(t) + 3 \\ 

\frac{d}{dt} (A e^t – 3) & = (A e^t – 3) + 3 \\ 

A e^t & = A e^t. 

\end{align*} 

If , then . 

ans 

b. Differential equation , solution , . 

\begin{align*} 

f'(t) & = 2 f(t) – 2 \\ 

\frac{d}{dt} (A e^{2t} + 1) & = 2(A e^{2t} + 1) – 2 \\ 

2 A e^{2t} & = 2 A e^{2t} + 2 – 2 \\ 

2 A e^{2t} & = 2 A e^{2t} 

\end{align*} 

If , then . 

ans 

c. Differential equation , solution , 

. 

\begin{align*} 

f'(x) &= \frac{1}{f(x) + 1} \\ 

\frac{d}{dx} (\sqrt{A+2 x+1} – 1) &= \frac{1}{(\sqrt{A+2 x+1} – 1) + 1} \\ 

\frac{d}{dx} (A + 2x + 1)^{1/2} & = \frac{1}{\sqrt{A + 2x + 1}} \\ 

\frac{1}{2} (A + 2x + 1)^{-1/2} \cdot 2 & = \frac{1}{\sqrt{A + 2x + 1}} \\ 

(A + 2x + 1)^{-1/2} & = \frac{1}{\sqrt{A + 2x + 1}} \\ 

\frac{1}{\sqrt{A + 2x + 1}} & = \frac{1}{\sqrt{A + 2x + 1}} 

\end{align*} 

If , then . 



ans 

d. Differential equation , solution , 

. 

\begin{align*} 

f'(t) & = (f(t))^2 + f(t) \\ 

\frac{d}{dt} \left( -\frac{Ae^{t}}{Ae^t – 1} \right) & = \left(-\frac{Ae^{t}}{Ae^t – 

1}\right)^2 + \left( -\frac{Ae^{t}}{Ae^t – 1} \right) \\ 

-\frac{(A e^t – 1)Ae^t – Ae^t(Ae^t)}{(A e^t – 1)^2} & = \frac{(A e^t)^2}{(A e^t -1 )^2} – 

\frac{Ae^t}{A e^t – 1} \\ 

-\frac{(A e^t)^2 – Ae^t – (Ae^t)^2}{(A e^t – 1)^2} & = \frac{(A e^t)^2}{(A e^t -1 )^2} – 

\frac{Ae^t}{A e^t – 1} \cdot \frac{(A e^t – 1)}{(A e^t – 1)} \\ 

-\frac{- Ae^t}{(A e^t – 1)^2} & = \frac{(A e^t)^2}{(A e^t -1 )^2} – \frac{(A e^t)^2 – 

Ae^t}{(A e^t – 1)^2} \\ 

\frac{Ae^t}{(A e^t – 1)^2} & = \frac{(A e^t)^2}{(A e^t -1 )^2} + \frac{-(A e^t)^2 + Ae^t}{(A 

e^t – 1)^2} \\ 

\frac{Ae^t}{(A e^t – 1)^2} & = \frac{(A e^t)^2 – (Ae^t)^2 + Ae^t}{(A e^t -1 )^2} \\ 

\frac{Ae^t}{(A e^t – 1)^2} & = \frac{Ae^t}{(A e^t -1 )^2} 

\end{align*} 

If , then . 

ans 
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CHAPTER 51 

GROWTH GROWTH AND AND DECAY DECAY 

W 
e’ve seen a differential equation pop up several times already, and it is the most common and 

simplest of all differential equations: 

When  is positive, this is saying that  is growing at a rate proportional to the value of the function 

at any given point. As we’ve seen, population tends to follow this rule, but several other things do as 

well. When  is negative, this is saying that  is decreasing at a rate proportional to its value, and 

this is true for several things as well. These are called the growth and decay equations respectively. 

And there is a simple solution to the differential equation . It is . 

Let’s see some examples 

Example Decay 

Problem A radioactive isotope decays at a rate of  times its mass in grams per day. 

Initially, a sample contains  grams of the isotope at . 

1. How much of the isotope will there be left at ? 

2. At what time will there be  gram left? 

Let  be the mass of isotope in grams at time . Thus, , since we start with 

 grams. Since the isotope decays at a rate of  times its current mass, we see that 

. The negative is in there because it is a decay rate — the amount of 

isotope is going down. We know the solution to a differential equation like this is 

Since , we also have , and hence . Our 

equation for the mass of the isotope is now 

From here, we can now tell how much isotope will be left at . We plug in  and 

have 



This solves part (1). 

To find out when there will be  gram left, we solve 

\begin{align*} 

1 & = 40 e^{-0.003t} \\ 

\frac{1}{40} & = e^{-0.003 t} \\ 

\ln \left( \frac{1}{40} \right) & = -0.003t \\ 

\frac{1}{-0.003} \ln \left( \frac{1}{40} \right) & = t 

\end{align*} 

Simplifying this, we see  or a little over  years. This solves part (2). 
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CHAPTER 52 

HOMEWORK: HOMEWORK: GROWTH GROWTH AND AND DECAY DECAY 

1. Money that is compounded continuously follows the differential equation 

, where  is measured in years,  is measured in dollars, and  is the rate. Suppose 

 and . 

a. What is a function that satisfies this initial value problem? 

We know from class that this is an exponential . 

ans 

b. How much money will there be at year 30 (i.e. )? 

$4481. 69 

ans 

c. When will there be  dollars? 

 years. 

ans 

2. The mass of bacteria on a deceased animal follows the equation , where 

 is measured in grams and  is measured in hours. 

a. If , what is a function that satisfies this initial value problem? 

ans 

b. How much bacteria will there be at ? 

 grams 

ans 

c. When will there be one kilogram of bacteria? 

2 days, 21 hours 

ans 

3. For a cooling object outside in  degree weather, temperature decreases according to the 

differential equation , where  is measured in minutes and 

measured in Fahrenheit. 



a. If the temperature is initially , what is the function that satisfies this initial value 

problem? 

ans 

b. What is the temperature after 1/2 hour? 

 degrees 

ans 

c. At what time did the object reach the freezing point of water? 

Approximately  minutes 

ans 

226 TYLER  SEACREST



CHAPTER 53 

EXPLORING EXPLORING GRAPHS GRAPHS OF OF DIFFERENTIAL DIFFERENTIAL EQUATIONS EQUATIONS 

I 
n this section we will focus on differential equations that model climate change. Now compared 

to sophisticated climate models used by climate scientists, this is just a toy model and doesn’t cover 

all the complexities of real climate. However, it does show how feedback loops can amplify the 

effects of climate change. 

Photo by Ian Barbour 

In terms of global earth temperature, what greenhouse gas is responsible for trapping the most 

heat? You may be surprised to learn that it is H O, not CO . Water vapor is a more effective 

greenhouse gas than carbon dioxide, and there is a lot more of it too. So why don’t more people talk 

about H O in regards to global warming? It’s because the amount of H O is not a driving force behind 

climate change. The H O is dependent on temperature to begin with. Since you can’t increase the H



O without increasing temperature, you can’t use H O to increase temperature. However, that doesn’t 

mean H O can be ignored either. 

Consider the following set of differential equations.  is the global temperature,  is the 

amount of water, and  the amount of carbon. 

\begin{align*} 

\frac{d}{dt} T & = c – d T+ e W + f C \\ 

\frac{d}{dt} W & = a (gT – W) \\ 

\frac{d}{dt} C & = b 

\end{align*} 

Problem Follow the steps from the section on understanding differential equations to 

understand what this differential equation is saying 

Okay, let’s go through the steps. 

1. Understand what each variable is measuring with correct units. 

There are no units listed in the problem, so we will make up some reasonable guesses for 

what they are. Anyway,  is a measure of time as usual, we could say measured in years after 

some starting date.  is the global temperature, we will say measured in Celsius.  is 

the average concentration of water vapor globally at time , and  is similar for CO . We 

will assume  and  are measured in parts per million, or ppm. Then we have 

is how fast the temperature is changing globally (in degrees Celsius per year),  is the 

change of water concentration (in ppm per year), and  is the change in CO  (in ppm per 

year). Note that while I “guessed” the units for ,  and , the units for a derivative are 

forced from those choices, so I can’t just make up new units for say . See this chapter 

on interpreting the derivative for more information. 

So what are ? Well, we’ll talk about these more in the next step but they are 

basically parameters that relate how much of an effect various quantities have on each other. 

2. Write down what relationship the differential equation is describing in common, no-nonsense 

language. 

Let’s start with the simplest equation: . This is just saying that carbon is increasing 

(or decreasing) at a constant rate . This tells us what  is as well; assuming  is positive, it’s 

how fast we’re putting carbon into the atmosphere. 
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The next simplest equation is . Ignoring  and  for a second, this 

tells us that water vapor increases at a rate that looks like the difference between temperature 

and water vapor. So a hot and dry atmosphere will tend to get wetter, while a cool or damp 

atmosphere might mean a negative difference so it would get less wet. The values of  and 

affect the severity of these trends. 

Finally, let’s look at the more complicated equation: . Let 

us break that down into two pieces, starting with . Assuming  is positive, the  is 

basically a constant source of temperature increase. However, as the temperature increases, 

we see that the  term will tend to cool things off. We will see in the next step what these 

terms really mean. But for now, let’s move on to . This is saying that the bigger 

 and  are, the hotter the earth will get. 

3. Explain why those relationships seem to make sense. 

We just got done thinking about the equation , so let’s start 

there. Let’s focus on . Why are these terms here influencing temperature? Well, we 

said  was a constant source of temperature increase — does that ring a bell? Yes, it’s the sun! 

Ignoring other effects, we will continue to absorb solar energy until we are hotter than Venus. 

So hopefully there is something that will cool us off. In this equation it is the term . Why 

is this term here? Well, it turns out the hotter the earth gets, the more heat energy will be 

radiated away. We don’t generally see this energy with our eyes, because it is infrared, but it’s 

there. This  is the basic energy balance that determines the temperature of the earth. 

A similar equation would hold true for any planet. 

However, to this, we add . Why? That’s right — water and carbon are 

greenhouse gases, so the more  and , the hotter the earth will tend to get. Now 

technically, these are really just absorbing that infrared energy from the earth, so they are not 

actually separate from the  term, but for simplicity I’ve just listed them as separate terms. 

This is one of many simplifications in this model that a real climate model would correct. It’s 

important to note at this point that, even though carbon is the driver behind global warming, 

it’s actually the water that is the better greenhouse gas and much more prevalent. Because of 

this, the  term should be much larger than the  term. 

Let’s focus now on the  equation. We already said that this equation 

implies that hot and dry air will tend to absorb more water, while cool and damp air would 

lose water. This makes sense since hot air just holds more water. Also, the hot air will heat the 

oceans causing evaporation. 

Finally, why do we have the equation ? Well, the amount of carbon in the 
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atmosphere is a very complex system. But for simplicity we can say it is increasing at a 

constant rate , due mostly to humanity burning fossil fuels. 

Okay, now we understand some things about these differential equations, what do they tell us? For 

this, we will turn to computers to create some graphs for us. These graphs are all solutions to the 

differential equations. And while these graphs won’t perfectly depict reality, they will show us some 

aspects of climate change you might not realize. We will use this website that graphs the solution for 

us. It looks like this: 
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Let’s take a closer look at that graph. Note we have , , , , 

, and . Notice that  is much smaller than , reflecting how much less of an effect 

carbon has compared to water. 

Okay, not a lot happening yet. But you can start to get familiar with the graph. First, you’ll note 

that Global Temperature, Water, and Carbon levels are all around . Note that does not mean the 

temperature is  C, or that Carbon is  ppm. Instead this represents some sort of “relative” value of 

these quantities compared to normal. This makes it easier to put these things on the same graph. So 

represents normal,  would be twice normal,  would be half of normal, and so on. 

The amount of carbon in the atmosphere related to the  value. So if I increase this from  to 

about , we see the change in the graph below. 
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Now the carbon is taking off, but not much is happening to the global temperature. Why is this? 
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Well, notice we set . This has the effect of keeping the water value constant, even though in 

reality it would increase as the temperature increases. So let’s see what happens when we set 

: 

Now we can see how the temperature increases the water vapor, which furthers increases the 

temperature, which further increases the water vapor, and so on. This is a classic example of a climate 

feedback loop. The end result is a much higher global temperature with the same basic increase in 

carbon. This is consistent with more advanced models, which show that water roughly doubles the 

effect of carbon. Note that I don’t expect a 25% increase in temperature over the next  years – this 

is exaggerated to illustrate the relationships. 

A couple more things: Suppose we don’t increase carbon anymore, but still have that water vapor 

effect. What happens? Here, I’ve left  at , but reduced  to . 
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Clearly, this is much better than when we were increasing carbon so fast. However, notice there is 

still an increase in temperature. That’s because these feedback loops continue to operate even after 

we stop increasing carbon. As a result, scientists expect global temperatures to rise for several decades 

even if we manage to become carbon neutral as a planet. 

Finally, the worst-case scenario is as follows. It has the same settings as the previous example, just 

with  (the effect of water vapor) increased 10% 
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This is the “runaway greenhouse effect”, where a feedback loop gets out of control, and even with 

no additional carbon the temperature increases to the point where the seas boil away. Most scientists 

think this isn’t possible for earth even with large amounts of additional carbon, but with the right 

conditions this sort of thing is possible. Scientists think this is what happened to Venus hundreds of 

millions of years ago. 

Please feel free to play around with the model yourself! 
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CHAPTER 54 

PROJECT: PROJECT: MODELLING MODELLING WITH WITH DIFFERENTIAL DIFFERENTIAL EQUATIONS EQUATIONS 

P P 
urpose: To be introduced to the concept of modeling with differential equations 

In this project, you’ll choose a well-known differential equation model from biology, try to 

understand the differential equations, and explore graphical solutions. 

Choose one of the following topics: 

• SIR ranavirus model. Ranavirus is a disease that affects reptiles, amphibians, and fish; 

“Ranavirus is believed to be the cause of several recent mass mortality events in amphibian 

populations across the globe” (link). Given a population, let  be the number of frogs 

suseptible to ranavirus, let  be the number of frogs currently infected with the disease, 

and let  be the number of frogs that have died. Note that at any time, 

 is the equal to the total population.Then 

\begin{align*} 

\frac{dS}{dt} & = -a S(t) \cdot I(t) \\ 

\frac{dI}{dt} & = a S(t) \cdot I(t) – b I(t) \\ 

\frac{dR}{dt} & = b I(t) 

\end{align*} 

Here,  and  are unknown parameters that affect the dynamics of this problem. 

Click here for the DiffEQ grapher for the Ranavirus SIR model. 

https://www.northeastwildlife.org/disease/ranavirus
https://tyler-seacrest.github.io/informal-calculus/diffeq.html?S?-a*S*I?100?Susciptible?I?a*S*I-b*I?5?Infectious?R?b*I?0?Died?????12?24?27?10?42?10?24?500?100?SIR%20Ranavirus%20Outbreak?months?population


• Lotka-Volterra equations for simple modeling of predator and prey dynamics, such as the 

moose and wolf populations in Isle Royale National Park (link). Given  is a population of 

prey (Moose), and  is the population of predators (wolves), we have 

\begin{align*} 

\frac{dM}{dt} & = a M(t) – b M(t) \cdot W(t) \\ 

\frac{dW}{dt} & = – c W(t) + d M(t) \cdot W(t) 

\end{align*} 

Here, , , , and  are unknown constants, but they are parameters that affect the 

interaction between the two species. 

Click here for the DiffEQ grapher for the Lotka-Volterra equations. 
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• Protozoa Competition: Paramecium aurelia and Paramecium caudatum are two species of 

single-celled protozoa, which were studied by G.F. Gause when he formulated his famous 

Competition exclusion principle (link). Let  be milligrams of Paramecium aurelia, and 

 be milligrams of Paramecium caudatum. Suppose  and  satisfy: 

\begin{align*} 

\frac{dA}{dt} & = a A(t) – b(A(t) + C(t)) A(t) \\ 

\frac{dC}{dt} & = c C(t) – d(A(t) + C(t)) C(t) 

\end{align*} 

Here,  are the parameters that affect this problem. 

Click here for the DiffEQ grapher for the Protozoa equations. 
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Once you’ve chosen a topic, here is what to do: 

1. Follow the steps from the section on understanding differential equations to understand 

what the differential equation is saying. 

2. Using the supplied “DiffEQ” webpage, explore graphical solutions to the differential 

equation. 

a. What do the parameters , , etc., represent? 

b. What setting for the parameters create realistic looking graphs? 

c. How can you “break” the model and create unrealistic graphs? 

d. What are some different ways to create a relatively good outcome (that is, few people 

get the disease)? 

3. Try to think of something this simple model doesn’t take into account. 

a. How could you modify the differential equations to account for this factor? 

b. Using the DiffEQ webpage, explore graphical solutions to your new differential 

equations. Do you feel like you were successful in implementing the new factor? 

What lessons can be learned from the graphs? 
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PART VI 

INTUITION FOR INTEGRATION 





CHAPTER 55 

INTRODUCTION INTRODUCTION TO TO INTEGRALS INTEGRALS 

S 
uppose construction workers needed to remove dirt in a hill in order to run a road though it. 

The swath needed to be excavated is  meters wide, and the hill is parabola shaped. Here is a 

picture: 

How much dirt needs to be removed? What do we need to know to solve the problem? 

That’s right — we need to know the volume of the region we’re excavating. Here is a picture of the 

region we are removing: 

Such an object is called a “prism” — it’s basically two dimensional shape that has been given a little 

thickness. Finding the volume involves finding the area of the shape times its thickness: 



10 m

A

In this case, the area is labeled  in the diagram, and the width is . So the amount of dirt being 

hauled away is . But what is ? How do we find it? That is where integration comes in. 

 is a parabola like shape, but let’s say it is bounded on top by the function . 

Thus you get a picture like this: 

y = x(50-x)/125

A

How do we find the area of a curved shape like this? Well, we don’t know how to find the area of an 

arbitrary curved shape. But we DO know how to find the area of a rectangle: it is height times width. 

So let’s use rectangles: 

y = x(50-x)/125

5040302010

So it’s not a great approximation yet, but bear with me. The area of the boxes does approximate the 

area under the curve to some extent. But how do we figure out the area of the rectangles? Well, that’s 

height times width, and we can see that the width of each box is . So we just need the height of each 

rectangle. 

When I drew each rectangle, I made it so that the right side of the rectangle was exactly the 

height of the function. The height of the function is something we can find! That’s because we 

know the hill follows the function . The height of the hill, and the height 

of the rectangles can then be found. For example, the height of the first rectangle is just plugging 

 into our function. So the height is 

. The height of the second rectangle is . The 
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third rectangle has height , the fourth rectangle has 

height , and the fifth has height 

. 

If we take these heights and multiply by the width, we get the area of each rectangle. 

y = x(50-x)/125

5040302010

3.2

4.8

32
48 48

32
0

Adding up all the area from all the rectangles, we have  m . This is 

an approximation of the area. 

Now you might say that this approximation might not be very good, and you’re correct. It certainly 

gives the rough idea, which might be all that we need. But if we need a very precise answer,  isn’t 

good enough. So what can we do? Let’s use more rectangles! 

y = x(50-x)/125

The idea of using rectangles like this to get better and better approximations of area is called a 

Riemann Sum. Now, we could find the height and width of each of those rectangles, but it would 

be a bit tedious. Since mathematicians are lazy, we often have a computer do the work for us. 

For example, website “MathWorld” has a Riemann Sum calculator: http://mathworld.wolfram.com/

RiemannSum.html. Using this calculator, we can see that when using  rectangles, the sum becomes 

. This is called numeric integration (If you use more and more rectangles, you can actually find a 

very precise answer of  — this is how the program computes the “actual area”. However, this 

is still an approximation, not an exact value.) 

What does this have to do with the dirt problem? Remember, we were trying to find the volume of 

this slice: 
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10 m

A

What we have done with the Riemann sums is find . To find how much dirt is hauled 

away, we just need to multiply by the width of the prism, which is  m. Hence  cubic meters 

of dirt must be hauled away. 
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CHAPTER 56 

NUMERIC NUMERIC INTEGRATION INTEGRATION TECHNIQUES TECHNIQUES 

T 
his process of finding the area underneath a curve is used for a lot more than finding how much 

dirt needs to be hauled away — in fact, it’s vital to many physics, engineering problems, and it 

even crops up in environmental science and biology problems. Let’s do some more examples to 

get a feel for how it works, and to introduce the notation for it. 

Given a function , the area under the curve from  to  looks something like this: 

x = a x = b

f(x)

This area is denoted by mathematicians as 

Here, the  and  indicate the left and right boundaries of the area we are interested in. The  and 

the  you can think of as just part of the notation for now, though they relate to how mathematicians 

write finite sums (with the integral being a sort of infinite sum). Sometimes this is called a definite 

integral to separate it from an indefinite integral. A definite integral is an area under a curve, and 

indefinite integral is an anti-derivative. 



A weird quirk of definite integrals as area is that sometimes the area goes negative! This happens 

whenever the function drops below the -axis. 

x = a x = b

f(x)

negative area

positive area

Here are some examples. 

Example 

Riemann Sum I 

Problem Approximate  using five rectangles. 

First, if we graph this function, we see it looks something like (not to scale) 

x = 4 x = 14

f(x) = 1/16 x
2

We will approximate the area in this case with five rectangles: 

x = 4 x = 14

f(x) = 1/16 x
2

This is called the “right rectangle rule”, since it is the top right of the rectangles that match the 

height of the function. 

We just need to find the areas of these rectangles, add them up, and be done. We see the width 

of each rectangle is , since the distance from  to  is , and there are  rectangles. The heights 
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can be found by plugging in  into the function. We see the heights are 

, , , , and . Adding 

these up, we see the total area is . 

LIST OF NUMERIC INTEGRATION FORMULAS 

We can write a formula for approximating with  rectangles or other shapes. Let  be the width of 

the shapes, and , , , , , ,  be the values along the  axis. It looks like 

the following for : 

What follows are various methods for approximating the area. First, there are three rectangle-based 

approximations: 

 left rectangle approximation = 

 right rectangle approximation = 
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 midpoint rectangle approximation = 

If we instead use trapezoids to approximate the area, which is more accurate, we get this formula 

 trapezoid approximation = 

Finally, if  is even, then we can approximate with quadratic curves, which is more accurate yet. We 

have 

Simpson’s rule = 
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Here is an example. 

Example 

Numeric integration techniques example 

Problem Use left rectangles, trapezoids, and Simpson’s rule to approximate . In 

each case use . 

If , then we will need to know , , , , and . The five points 

 are evenly spaced on the interval from  to . To find the spacing, we take 

. This makes , and hence , , , 

, and . We can then compute each  value. For example, 

. The other  values are 

Now we just have to use the various formulas. Using rectangles, we have 

\begin{align*} 

\int_0^8 \frac{1}{x+1}& \approx \Delta x( f(x_0) + f(x_1) + f(x_2) + f(x_3)) \\ 

& = 2\left( 1 + \frac{1}{3} + \frac{1}{5} + \frac{1}{7} \right) \\ 

& = 2 \left( \frac{176}{105} \right) \\ 

& = \frac{352}{105} \approx \boxed{3.35} 

\end{align*} 

By the way, please use a calculator to help with these calculations — they are very tedious to do 

by hand! 

Using trapezoids, we have 

\begin{align*} 

\int_0^8 \frac{1}{x+1}& \approx \frac{\Delta x}{2}( f(x_0) + 2 f(x_1) + 2 f(x_2) + 2 f(x_3) + f(x_4)) 

\\ 

& = \frac{2}{2} \left( 1 + \frac{2}{3} + \frac{2}{5} + \frac{2}{7} + \frac{1}{9} \right) \\ 

& = 1 \left( \frac{776}{315} \right) \\ 

& = \frac{776}{315} \approx \boxed{2.46} 

\end{align*} 

Using Simpson’s rule (which approximates with parabolas), 

\begin{align*} 

\int_0^8 \frac{1}{x+1}& \approx \frac{\Delta x}{3}( f(x_0) + 4 f(x_1) + 2 f(x_2) + 4 f(x_3) + f(x_4)) 

\\ 

& = \frac{2}{3} \left( 1 + \frac{4}{3} + \frac{2}{5} + \frac{4}{7} + \frac{1}{9} \right) \\ 

& = \frac{2}{3} \left( \frac{1076}{315} \right) \\ 
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& = \frac{2152}{945} \approx \boxed{2.28} 

\end{align*} 

(By the way, the exact value is ) 
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CHAPTER 57 

HOMEWORK: HOMEWORK: NUMERIC NUMERIC INTEGRATION INTEGRATION TECHNIQUES TECHNIQUES 

1. Given the picture of , find the following definite integrals. 

4

-4

4

2 6

-2

2

-2

a. . 

ans 

b. . 

ans 

https://oer.pressbooks.pub/app/uploads/sites/33/2021/03/hw9-pic1-1.svg


c. . 

ans 

d. . 

ans 

e. . 

ans 

f.  (what do you think this even means?) 

 — You can think of this as an infinitely thin rectangle. 

ans 

g. . 

ans 

h. . 

ans 

i. 

ans 

2. Remember those problems from homework 1 where we started with a velocity graph and 

then drew the position graph? Let’s try that again. 
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a. Draw the position graph corresponding to this velocity graph next to the graph 

above. 

ans 

b. Find the following three integrals based on the original graph : 

, , 

ans 

c. Your answers for parts (a) and (b) should look the same in some way. How do they 

look the same, and why did it work out this way? 

The answers are the key -values from the graph in part (a). This is the same, since in 

both cases you are doing the same thing: takeing  (or  and 

adding it up as you go. 

ans 
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3. Using  rectangles and using the left rectangle rule, estimate the area under the curve of the 

following functions from  to . 

a. . 

ans 

b. 

ans 

c. 

ans 

4. For  in problem 3, find the exact area using the formula for the area of a triangle. 

ans 

5. For  in problem 3: 

a. If you haven’t done so already, sketch a picture of the graph as well as the rectangles 

you used to approximate the area. 

b. Is your approximation from problem 3 an over-estimate or an under-estimate? How do 

you know? 

Overestimate, since it looks like the rectangles cover too much area. 

ans 

6. Watch the Khan Academy video on the Trapezoidal method of finding the area under the 

curve. 

7. Using  trapezoids that match the height of the graph, estimate the area under the curve of 

the following functions from  to . 

a. . 

ans 

b. 

ans 

c. 

ans 
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8. Watch this Khan Academy like video on the midpoint formula: click here 

9. Using  rectangles, use the midpoint rule to approximate the area under the curve from 

 to . 

a. . 

ans 

b. 

ans 

c. 

ans 

10. I couldn’t find a Khan Academy explanation of Simpson’s rule, so here is another video by 

Patrick at Just Math Tutoring. 

11. Use Simpson’s rule to approximate the area under the curve. Use  intervals from  to 

. 

a. . 

ans 

b. 

ans 

c. 

ans 

12. Note that the actual answers for the area under the curve from  to  are 

a.  for . 

b.  for 

c.  for . 

Given these answers, rate the following rules from most accurate to least accurate based on 

the answers from this homework: left rectangle rule, trapezoid rule, midpoint rule, Simpson’s 

rule. 
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CHAPTER 58 

FUNDAMENTAL FUNDAMENTAL THEOREM THEOREM OF OF CALCULUS CALCULUS 

I 
n the previous two sections, we saw that the area under a curve can be found using more and more 

rectangles. However, this process can be tedious and not very enlightening. There is a powerful 

theorem that allows us to compute area under the curve quickly in many cases. 

Fundamental Theorem of Calculus 

Given a function  where  is an anti-derivative of , we have 

 

This is a really remarkable theorem. At first blush, finding the area under a curve and finding 

the slope of a tangent line have nothing in common. What this theorem is saying is that these 

are intimately tied, and in fact that are exactly inverse operations. That is, one undoes the other. 

Moreover, this gives an exact answer to integral problems, something that eluded us in the previous 

sections. 

For example, let’s say we wanted to solve the following: 

Problem Find . 

To use the fundamental theorem, we need an anti-derivative of . The anti-derivative 

in this case, by the inverse power rule, is . Therefore . The answer then is 

, which is 

\begin{align*} 

\int_2^5 x^2dx & = \frac{5^3}{3} – \frac{2^3}{3} \\ 

& = \frac{125}{3} – \frac{8}{3} \\ 

& = \frac{117}{3} \\ 

& = \boxed{39} 

\end{align*} 



The area under the curve is . Note that  is sometimes denoted  We’ll see that 

in the following examples. 

Example 

Fundamental Theorem Examples 

• Problem Find . 

To solve this, we find the anti-derivative of , and then plug in the end points and 

subtract the result. First note that . 

\begin{align*} 

\int_{-2}^1 3x^2dx & = x^3 + C \Big|_{-2}^1 \\ 

& = (1^3 + C) – ((-2)^3 + C) \\ 

& = 1 + C – (-8 + C) \\ 

& = 1 + C + 8 – C \\ 

& = \boxed{9} 

\end{align*} 

Notice how the constants of integration cancel? For definite integral problems, we can 

essentially ignore the constant of integration for this reason. 

• Problem Find . 

We integrate and then evaluate again. 

\begin{align*} 

\int_0^6 \frac{1}{2}x^2 + \frac{1}{3} xdx & = \frac{1}{2} \int_0^6 x^2 + \frac{1}{3} \int_0^6 

xdx \\ 

& = \left( \frac{1}{2} \frac{x^3}{3} + \frac{1}{3} \frac{x^2}{2} \right) \Big|_0^6 \\ 

& = \left( \frac{x^3}{6} + \frac{x^2}{6} \right) \Big|_0^6 \\ 

& = \frac{x^3 + x^2}{6} \Big|_0^6 \\ 

& = \left( \frac{6^3 + 6^2}{6} \right) – \left( \frac{0^3 + 0^2}{6} \right) \\ 

& = \frac{252}{6} – \frac{0}{6} \\ 

& = \boxed{42}. 

\end{align*} 

Why does the fundamental theorem of calculus work? As we have seen earlier, it is sometimes easiest 
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to see in terms of position versus velocity. Let  be the position function of a car, let  be the 

velocity function of the car, and let  be the time in hours. For simplicity, let’s say  is constant 

from  to : 

So if this is the velocity function, what is happening to the position function? As we’ve seen, we just 

need to multiply: its the  times the four hours, gives a change of 40 miles. That means 

looks something like this: 

Note it need not start at  miles, but that is one possibility. 

Now let’s look at the fundamental theorem again: 

Fundamental Theorem of Calculus 

Given a function  where  is an anti-derivative of , we have 

Can you see why the fundamental theorem worked out in this case? We see see  is just 

the change of position between hour  and hour , which is  or  miles. What is 
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? Well, that’s the area under the velocity curve. How do you find area? That’s right, it’s multiplication! 

In particular, it is  times the four hours, again giving a change of  miles. 

You can see how both area under the curve and antiderivatives come down to the same basic 

calculation. That’s why the fundamental theorem of calculus can claim they are the same thing. 

If the velocity function is more complicated, this still works. We can think of a more complicated 

function as a combination of these constant functions. 
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CHAPTER 59 

HOMEWORK: HOMEWORK: THE THE FUNDAMENTAL FUNDAMENTAL THEOREM THEOREM OF OF CALCULUS CALCULUS 

1. What is the fundamental theorem of calculus saying? Think intuitively, big picture, etc. Use 

your own words. 

There are some possible answers I’m looking for: 

◦ Area under the curve can be computed using an anti-derivative 

◦ Integrals and derivatives cancel! 

◦ Finding area is related to finding slopes 

◦ Finding area and finding slope are inverse operations 

◦ To find how far something has gone using a velocity graph, use the area under the 

curve. 

ans 





CHAPTER 60 

PROJECT: PROJECT: MEASURING MEASURING STREAMFLOW STREAMFLOW 

P P 
urpose of the project: Apply numeric integration techniques to a real-world problem. 

How do you measure streamflow? The basic idea is simple: it is area times velocity. For example, 

suppose you had a river that was  feet wide,  feet deep, and had water moving at  feet per second. 

Then we multiply the  and the  to get an area of  ft , and the multiply by the  ft per second 

to get  ft  per second. This works great if you have a rectangular river where the water moves at 

a constant velocity. But what if the river is not a rectangle? What if the velocity changes depending 

on where in the river you are? How can you find the streamflow? And what does this have to do with 

numeric integration techniques? 

1. Come up with two different ways to find streamflow in a river. Why do they work? And how 

do they relate to the numeric integration techniques we studied? 

2. Try both methods on the virtual river (see river.html). I recommend using a spreadsheet to 

record your data and to automatically do the calculations for you. 

3. If you have access to a flow meter or some method of calculating water velocity, try out both 

methods in a real river. Which method do you feel worked better? Why? 





CHAPTER 61 

PROJECT: PROJECT: QUAKE QUAKE LAKE LAKE 

P P 
urpose of the project: Apply numeric integration techniques to a real-world problem. 

(source: library.usgs.gov, photo by J.B. Hadley) 

In 1959, an 7.2 magnitude earthquake caused a massive landslide in southwest Montana near 

Yellowstone National Park. 28 people were killed in the quake, and the landslide created a natural 

dam of the Madison river which created a new lake called Earthquake Lake or Quake Lake. See this 

travel blog for some additional photos and diagrams. The area where the land slid away is still mostly 

barren of trees today. 

The main question behind this project: roughly how much volume of rock and earth was moved in 

the landslide? 

http://travellingstrongs.blogspot.com/2016/09/yellowstone-west-side-part-1.html
http://travellingstrongs.blogspot.com/2016/09/yellowstone-west-side-part-1.html


1. What are some possible ways to figure how much volume? 

2. Using Google Earth and USGS topographical maps, give a very rough estimate of how many 

cubic meters or cubic feet of earth was moved in the landslide. 

3. Find an online reference for the volume of the landslide. Is your number high, low, or just 

right? Can you guess why your estimate was off in the direction it was? 

(source: https://ngmdb.usgs.gov/topoview/ ) 

Above is a topographical map of the area today. Below is two pictures zoomed in of the same area, 

right where the rock slide occured. The left image is an older map from before the rock slide, and the 

second is the same newer map image from after the rock slide. 
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INFORMAL  CALCULUS 269





PART VII 

RULES FOR INTEGRATION 





CHAPTER 62 

POWER, POWER, EXPONENTIAL, EXPONENTIAL, TRIG, TRIG, AND AND LOGARITHM LOGARITHM RULES RULES 

W 
e’ve already seen the inverse power rule, but here it is again: 

Note that this only works if . However, we haven’t seen how this works with fractional 

and negative powers yet. We’ll do some examples of this. 

We can also “undo” the derivatives for exponential, logarithmic functions, or trigonometric 

functions. 

On to the examples. Recall that  and . 

Example 

Power rule with fractional and negative powers 

• Problem Find . 

Negative and fractional powers work the same way as the positive powers we’ve been 



working with. We see 

\begin{align*} 

\int_4^9 x^{-3} + 2x^{1/2}dx & = \int_4^9 x^{-3}dx + 2 \int_4^9 x^{1/2}dx \\ 

& = \left( \frac{x^{-2}}{-2} \right) + 2 \left( \frac{x^{3/2}}{3/2} \right) \Big|_4^9 \\ 

& = \frac{1}{-2x^2} + 2 \frac{2 x^{3/2}}{3} \Big|_4^9 \\ 

& = \frac{1}{-2x^2} + \frac{4 x^{3/2}}{3} \Big|_4^9 \\ 

& = \left( \frac{1}{-2(9)^2} + \frac{4 (9)^{3/2}}{3} \right) – \left( \frac{1}{-2(4)^2} + \frac{4 

(4)^{3/2}}{3} \right) \\ 

& = \left( -\frac{1}{162} + \frac{108}{3} \right) – \left( -\frac{1}{32} + \frac{32}{3} \right) 

\end{align*} 

At this point, let’s just type it into a calculator to get an approximate answer. We see that 

the integral is about . 

• Problem Find . 

This problem becomes an inverse power rule problem if we notice that . We 

see 

\begin{align*} 

\int_1^2 \frac{1}{x^4}dx & = \int_1^2 x^{-4}dx \\ 

& = \frac{x^{-5}}{-5} \Big|_1^2 \\ 

& = -\frac{1}{5x^5} \Big|_1^2 \\ 

& = \left( -\frac{1}{5(2)^5} \right) – \left( -\frac{1}{5(1)^5} \right) \\ 

& = -\frac{1}{160} + \frac{1}{5} \\ 

& = -\frac{1}{160} + \frac{32}{160} \\ 

& = \boxed{\frac{31}{160}}. 

\end{align*} 

• Problem Find . 

If we remember that , this is a power rule problem. 

\begin{align*} 

\int_{25}^{100} \sqrt{x}dx & = \int_{25}^{100} x^{1/2}dx \\ 

& = \frac{x^{3/2}}{3/2} \Big|_{25}^{100} \\ 

& = \frac{2 x^{3/2}}{3} \Big|_{25}^{100} \\ 

& = \left( \frac{2 (100)^{3/2}}{3} \right) – \left( \frac{2 (25)^{3/2}}{3} \right) \\ 
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& = \frac{2000}{3} – \frac{250}{3} \\ 

& = \boxed{\frac{1750}{3}}. 

\end{align*} 

Now for logarithmic and exponential functions. 

Example 

Logarithmic and Exponential functions and integration 

• Problem Find . 

For this problem, you may be tempted to write this as  and use the inverse power 

rule. Good instincts, but in this case it won’t work (try it: it leads to division by zero!). So 

instead, let’s invert the natural logarithm derivative. 

\begin{align*} 

\int_1^5 \frac{2}{x}dx & = 2 \int_1^5 \frac{1}{x}dx \\ 

& = 2 \left( \ln(x) \right) \Big|_1^5 \\ 

& = (2 \ln(5)) – (2 \ln(1)) \\ 

& = 2 \ln(5) – 0 \\ 

& = 2 \ln(5) \approx \boxed{3.2}. 

\end{align*} 

• Problem Find . 

 is the best function for calculus. Doesn’t change with integration! 

\begin{align*} 

\int_{-2}^2 7 e^xdx & = 7 \int_{-2}^2 e^xdx \\ 

& = 7 (e^x) \Big|_{-2}^2 \\ 

& = (7 e^{2}) – (7 e^{-2}) 

\end{align*} 

Not a lot to do to simplify this, but we can get a decimal approximation: . 

INFORMAL  CALCULUS 275





CHAPTER 63 

HOMEWORK: HOMEWORK: POWER, POWER, EXPONENTIAL, EXPONENTIAL, TRIG, TRIG, AND AND LOGARITHMIC LOGARITHMIC 
RULES RULES 

1. Compute the following definite integrals. 

a. 

19.04 

ans 

b. 

ans 

c. 

ans 

d. 

ans 

e. 

ans 

2. Approximate  using  rectangles. Then find  exactly using an anti-

derivative. How far off is the approximation? 



Approximation , the actual is , so the difference is about  or  error 

which isn't great. As we know, the rectangles don't always do such a good job. 

ans 
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CHAPTER 64 

U-SUBSTITUTION U-SUBSTITUTION 

R 
ecall the chain rule: 

The method of “ -substitution” is a way of doing integral problems that undo the chain rule. It also 

helps deal with constants that crop up. 

 

-substitution: 

1. Identify an “inside” function whose derivative is multiplied on the outside, possibly with a 

different constant. Call this “inside” function . 

2. Compute  and solve for . 

3. Use substitution to replace  and , and cancel any remaining  terms if 

possible. 

4. Integrate with respect to . If at this point you still have any s in your problem, either you 

made a mistake or the method of -substitution will not work for this problem. 

5. Substitute back the s back into the answer before evaluating the definite integral. 

Let’s do some examples. 

Example -substitution 

Problem Find . 

We will follow the steps of  substitution. 

1. In this case, the “inside function” is . 

2. If we compute , we see the derivative of  is . Hence  and we 



have solving for 

\begin{align*} 

\frac{du}{dx} & = -5 \\ 

du & = -5 dx \\ 

-\frac{1}{5} du & = dx \end{align*} 

3. Going back to the original problem and using substitution  and 

, we thus have: 

\begin{align*} 

\int_0^3 e^{-5x}dx & \int_0^3 e^u dx \\ 

& = \int_0^3 e^u \left(- \frac{1}{5} du\right) \\ 

& = \int_0^3 -\frac{1}{5} e^udu. 

\end{align*} 

4. Integrating with respect to , 

\begin{align*} 

\int_0^3 – \frac{1}{5} e^udu & = -\frac{1}{5} \int_0^3 e^udu \\ 

& = -\frac{1}{5} e^u \Big|_0^3 

\end{align*} 

5. We now substitute . We have 

\begin{align*} 

-\frac{1}{5} e^u \Big|_0^3 & = -\frac{1}{5}e^{-5x} \Big|_0^3 \\ 

& = \left(-\frac{1}{5}e^{-15}\right) – \left(-\frac{1}{5}e^{-5(0)} \right) \\ 

& = -\frac{e^{-15}}{5} + \frac{1}{5} \\ 

& = \frac{1 – e^{-15}}{5}\\ 

& \approx \boxed{0.2} 

\end{align*} 

There we go. 

Example -substitution 

Problem Find the indefinite integral . 

Again, we will go through the steps of -substitution. 

1. The inside function in this case is . We can see that the derivative is , and this 

is good since there is an  multiplied out in front (the  is just a constant we can deal 

with.) Set . 
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2. We see , and hence solving for  we have . 

3. Subbing in  and , we have 

\begin{align*} 

\int x (x^2 + 1)^7dx & = \int x u^7dx \\ 

& = \int x u^7 \left( \frac{du}{2x} \right) \\ 

& = \int \frac{x}{2x} u^7du \\ 

& = \int \frac{1}{2} u^7du 

\end{align*} 

Great, the s are all gone! 

4. We can now integrate with respect to . 

\begin{align*} 

\int \frac{1}{2} u^7du & = \frac{1}{2} \int u^7du \\ 

& = \frac{1}{2} \frac{u^8}{8} \\ 

& = \frac{u^8}{16} 

\end{align*} 

5. Finally, we sub in the s again using . 

\begin{align*} 

\frac{u^8}{16} & = \boxed{\frac{(x^2 + 1)^8}{16} + C} 

\end{align*} 

Since this is an indefinite integral, we add the constant of integration. 

Example -substitution 

Problem Find the indefinite integral . 

Again, we will go through the steps of -substitution. 

1. The inside function in this case is . We can see that the derivative is , and this is 

good since there is an  dividing the rest of the problem. Set . 

2. We see , and hence solving for  we have . 
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3. Subbing in  and , we have 

\begin{align*} 

\int \frac{8 (\ln(x))^3}{x}dx & = \int \frac{8 u^3}{x} \cdot \frac{du}{\frac{1}{x}} \\ 

& = \int \frac{8 u^3}{x \cdot \frac{1}{x}}du \\ 

& = \int \frac{8 u^3}{1}du \\ 

& = \int 8 u^3du \\ 

\end{align*} 

Great, the s are all gone! 

4. We can now integrate with respect to . 

\begin{align*} 

\int 8 u^3du & = 8 \cdot \frac{1}{4} u^4 \\ 

& = 2 u^4 

\end{align*} 

5. Finally, we sub in the s again using . 

\begin{align*} 

\int \frac{8(\ln(x))^3}{x}dx & = \boxed{2 (\ln(x))^4 + C}. 

\end{align*} 

If the inside function is linear, the -substitution is much simpler, and there is even a formula for 

it (just like in the  example above). By the chain rule with  and , we 

have 

\begin{align*} 

\frac{d}{dx} \frac{1}{m} f(mx + b) & = \frac{1}{m} \frac{d}{dx} f(mx + b) \\ 

& = \frac{1}{m} \left( f'(g) \cdot g’ \right) \\ 

& = \frac{1}{m} f'(mx + b) \cdot m \\ 

& = \frac{m}{m} f'(mx + b) \\ 

& = f'(mx + b) 

\end{align*} 

If we integrate both sides of this equation, we have the following useful rule which I call the “chain 

rule shortcut”: 

This is especially important if . In this case, we have 
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In other words, you integrate just like normal without any -substitution, and then add a  factor 

for the fact that you have  inside the function instead of just an . 

Let’s see a couple of examples of this: 

Example Chain rule shortcut 

• Problem Find . 

Using the inverse power rule, we see this becomes . However, we need that 

 factor since the problem has a  in it. So the final answer is 

You’d get the same thing doing a full -substitution with . This way, 

though, you save some time by just multiplying by . 

• Problem Find . 

Again, we use the -sub shortcut — we just need to do power rule and remember a 

factor, which in this case is . 

\begin{align*} 

\int_{-2}^{-1} (3x + 5)^7dx & = \frac{1}{3} \frac{(3x + 5)^8}{8} \Big|_{-2}^{-1} \\ 

& = \frac{(3x + 5)^8}{24} \Big|_{-2}^{-1} \\ 

& = \left( \frac{(3(-1) + 5)^8}{24} \right) – \left( \frac{(3(-2) + 5)^8}{24} \right) \\ 

& = \frac{256}{24} – \frac{1}{24} \\ 

& = \frac{255}{24} \\ 

& = \frac{83}{8} 

\end{align*} 
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• Problem Find . 

The antiderivative here is just . We can plug  into a calculator and get 

, so the answer is . 
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CHAPTER 65 

HOMEWORK: HOMEWORK: U-SUBSTITUTION U-SUBSTITUTION 

1. As a review of the chain rule from derivatives, find . 

ans 

2. Read through section 6A again and then read through section 6B. 

3. Watch the Khan Academy video u-substitution. 

4. Compute the following indefinite integral using the method of -substitution. 

ans 

5. Watch another example of -substitution: u-substitution 2. 

6. Compute the following indefinite integral using the method of -substitution. 

ans 

7. Reread the part about the chain rule shortcut for -substitution in chapter 6 of the online 

notes, and reread Example 6B.2. Then try the following problems. 

a. . 

ans 

b. 

https://www.khanacademy.org/math/integral-calculus/integration-techniques/u_substitution/v/u-substitution
https://www.khanacademy.org/math/integral-calculus/integration-techniques/u_substitution/v/u-substitution-example-2


ans 

. 

c. . 

ans 

d. 

ans 

e. 

ans 

8. Try some more -substitution integrals. 

a. 

1. We see that  in this case. 

2. We see , so . 

3. We have 

\begin{align*} 

& = \int (8x^3) u^2 \frac{1}{4x^3} du \\ 

& = \int 8 u^2 \frac{1}{4}du \\ 

& = 2 \int u^2du 

\end{align*} 

4. Integrating we have 

5. Substitution of  yields 
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ans 

b. 

This is exactly the same as the previous problem, just written a different way. No 

need to redo work. 

ans 

c. 

1. We see that  in this case. 

2. We see , so . 

3. We have 

\begin{align*} 

& = \int (3x^2 – 1) e^u \frac{1}{3x^2 – 1} du \\ 

& = \int e^udu 

\end{align*} 

4. Integrating we have 

5. Substitution of  yields 

ans 

d. 

ans 

e. 

ans 
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f. 

ans 

g. 

ans 

h. 

ans 

i. 

ans 

j. 

1. We see that  in this case. 

2. We see , so . 

3. We have 

\begin{align*} 

& = \int \frac{x}{u^3}\frac{1}{2x}du \\ 

& = \int \frac{1}{2u^3}du \\ 

& = \int \frac{1}{2}u^{-3}du 

\end{align*} 

4. Integrating we have 

5. Substitution of  yields 
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ans 

k. 

ans 

l. . 

ans 

m. . 

ans 
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CHAPTER 66 

INTEGRAL INTEGRAL APPLICATIONS APPLICATIONS 

I 
n derivative story problems, often you’re given a function that describes the amount of something, 

and you’re asked to find the rate of change. With integral story problems, the reverse is often true. 

You’ll be given a function the describes the rate of change over time, and you’ll be asked to get the 

amount. 

Problem At time  seconds, train starts with velocity  meters per second, and eventually 

gets up to a speed of  meters per second at time  seconds. How far has it gone from 

 to ? 

Discussion: We know that distance is equal to velocity multiplied by time. So if we can figure out the 

train’s velocity, we can just multiply by  seconds and get an answer. So here are some potential 

answers: 

Why can’t we just go with  meters per second? Because the train “eventually” gets up to  meters 

per second doesn’t mean it was going  meters per second the whole time — most of the trip it may 

have been going slower. So the answer of  meters (or  kilometers) is an upper bound, but 

isn’t the final answer. We need more information. 

Problem (Additional information) The speed of the train is given by the function 

meters per second. 

What this additional information is telling us is that there isn’t just a single velocity we can use and 

multiply by the  seconds — instead, the velocity is changing all the time so there are lots of 



velocities. Since the train goes from  to  meters per second, can we just use the “average” which is 

 meters per second? Well, let’s look at the speeds over time: 

You can see the train spends much more time above 20 m/s than it does below, so that the train 

probably goes farther than  meters (  km). 

What about the speed at time  which is  m/s? Can we use this value? Well, let’s see 

what that would mean visually. That’s basically treating the speed at the half-way point like it is a 

constant velocity: 

So if we use a velocity of  meters per second, that would give a final distance of 

 meters (22.6 km). But even this isn’t quite right. The train spends an equal 

amount of time slower than  and faster than , but the slow region (from time  to time 

) is slower than the fast region (time  to time ) is fast. They don’t exactly cancel, so likely the 

train won’t quite reach  km. Somehow, instead, we need to take into account the speed of the 

train at every instant. Sound familiar? This is where an integral is going to come it. Basically if we take 
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the speed of the train at a small time frame, and multiply by the time it is going that speed, you get a 

picture that looks like this: 

This is of course just the area under the curve! So we use the fundamental theorem of calculus to 

find the actual answer: 

\begin{align*} 

\int_0^{800} \sqrt{2t}dt & = \int_0^{800} \sqrt{2} \cdot \sqrt{t}dt \\ 

& = \int_0^{800} \sqrt{2} \cdot t^{1/2}dt \\ 

& = \sqrt{2} \cdot \frac{1}{3/2} \cdot t^{3/2} \bigg\rvert_{0}^{800} \\ 

& = \sqrt{2} \frac{1}{3/2} (800)^{3/2} – \sqrt{2} \frac{1}{3/2} (0)^{3/2} \\ 

& \approx 21300 \text{ m} 

\end{align*} 

A quick check to see if this is reasonable: we’re saying the train went 21.3 km in those 13 minutes. 

Seems a bit fast for a train but not impossible. It’s less than our max of 32 km, but more than the guess 

of 16 km that we thought it would beat. Seems reasonable! 
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CHAPTER 67 

HOMEWORK: HOMEWORK: INTEGRAL INTEGRAL APPLICATIONS APPLICATIONS 

1. A car’s velocity follows the equation  feet per second from  to 

. How far does the car travel during this time period? 

 feet 

ans 

2. A car’s velocity follows the equation  from  to . How far 

does the car travel from  to ? 

 units 

ans 

3. A car’s acceleration follows the equation  from  to . Recall that 

acceleration is the derivative of velocity. 

a. Find a function  for the velocity at time . 

 (you could also add any constant to this and still have a valid answer.) 

ans 

b. How far does the car travel from  to ? 

Need to compute  units. 

ans 

4. An employee’s wages start at $10,000 a year and quickly increase after that at a rate of 

per year, continuously implemented. Thus, at year , the employee makes 

dollars per year. 

a. How much does the employee make per year at year ? 

ans 

b. How much total does the employee make in the first five years? 



ans 

5. Water drains from a tub at a rate of  gallons per minute, with  measured in 

minutes. 

a. How long does it take for the rate to drop to zero? 

ans 

b. How much total water has been lost at this point? 

ans 

6. A biologist models elk growth rate as  measured in elk per year. 

a. How fast is the elk growth rate changing at ? 

 elk per year per year 

ans 

b. How many elk were born in the first 20 years of this model? 

ans 

c. Do a sensitivity analysis. Given a small change in , how does that affect the answer 

to part (a)? Given a small change in , how does that affect part (a)? 

7. Let  be the rate at which GDP is growing measured in dollars per day. Match the 

symbols ,  and  to the following statements. 

a. This measures the rate that GDP growth is speeding up or slowing down. 

ans 

b. This measures how much GDP has increased since the beginning of the year. 

ans 

c. This measure how quickly GDP is increasing. 
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ans 

8. The Greenland ice sheet is losing ice. It is estimated that it is losing ice at a rate of 

 gigatonnes per year, with  measured in years, and 

representing . How many gigatonnes of ice will the ice sheet lose from  to ? 

 gigatonnes. 

ans 

9. Let  be the crime rate in the city of Gotham, with  measured in crimes per day, 

and  measured in days. Match , , and  to the following. 

a. This function would tell you how many crimes are committed over the last 90 days. 

ans 

b. This function would tell you how many crimes per day were being committed 90 

days ago. 

ans 

c. This function will tell you how quickly the crime rate was increasing or decreasing 

90 days ago. 

ans 

10. When blasting off from the earth into space, a rocket uses fuel at a rate of 

, where  is measured in seconds and  is measured in gallons 

per second. 

a. How many gallons are used in a four-minute flight starting at . 

ans 

b. How many gallons are used in a two-minute flight starting at ? 

ans 

c. Should your answer for (b) be exactly half of the answer for part (a)? Why or why 

not? 

No, since rockets don’t use fuel at a constant rate. 
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ans 

11. The amount of sun power that is available to a flower is given by 

 kilojoules per hour. The flower can absorb energy at 

efficiency, meaning it can use or store about  of the available sunlight energy. How much 

energy (in kilojoules) does the flower absorb in a -hour period? 

 kilojoules 

ans 

12. Submarine Navigation 

Nuclear submarines spend months underwater with no access to GPS or similar navigation 

techniques. Instead, they use a “dead reckoning” approach where accelerometers are used to 

keep track of how fast they are moving, from which their position can be determined. A 

submarine starts not moving at all. Given the following list of accelerations, estimate how far 

the submarine has gone. 
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CHAPTER 68 

INTEGRATION INTEGRATION BY BY PARTS PARTS 

R 
ecall the product rule: 

If we use  and  instead of  and , this becomes 

Now let’s integrate both sides and solve for 

\begin{align*} 

\frac{d}{dx} u \cdot v & = u v’ + v u’ \\ 

\int \frac{d}{dx} uvdx & = \int u v’ + v u’dx \\ 

uv & = \int u v’dx + \int v u’ dx \\ 

uv – \int v u’dx & = \int u v’dx, 

\end{align*} 

Flipping this around, we have the inverse product rule, also called integration by parts. 

The tricky part is what to use as , and what to use as . Here are some steps and guidelines 

to follow, but it takes some intuition building before you know how to use it sometimes, and some 

product integrals cannot be solved with integration by parts. 

 

Integration by parts: 

1. Think of your original integral as a product. Identify a function that is easy to integrate, and 

set it equal to . The other function should be something that will simplify nicely once you 

take the derivative. 

2. Find  (take the derivative of ) and find  (integrate ) 

3. Using substitution, plug in the values for , ,  and  in the integration by parts formula. 

4. This gives you another integral — hopefully this one is easier. If not, you may need to use 

-substitution, or even integration by parts a second time. 

 



Example Integration by parts 

Problem Find . 

Let’s follow the integration by parts steps: 

1. The function we are integrating is , which is a product in two pieces:  and . 

While  is easy to integrate,  is even nicer. We will start with , and . 

2. We see , and  (you don’t need to worry about the 

 for now). 

3. Using the formula with , , , and , we have 

\begin{align*} 

\int_0^2 x e^xdx & = uv – \int u’ vdx \\ 

& = (x)(e^x) – \int_0^2 (1)(e^x)dx \\ 

& = x e^x – \int_0^2 e^xdx \\ 

\end{align*} 

4. We now have reduce the problem to an easier one: . We continue: 

\begin{align*} 

\int_0^2 x e^xdx & = x e^x – \int_0^2 e^xdx \\ 

& = x e^x – e^x \Big|_0^2 \\ 

& = (2 e^2 – e^2) – (0e^0 – e^0) \\ 

& = (e^2) – (0 – 1) \\ 

& = e^2 + 1 

\end{align*} 

So the answer is . 

Notice if the problem contains an  variable, then this is usually a good choice for  since it will 

go away once you take the derivative . 

Example Integration by parts 

Problem Compute . 

We following the steps of integration by parts. 
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1. Set , which simplifies nicely with the derivative, and let 

which is easy to integrate. 

2. We have , and . 

3. Applying the formula, we have 

\begin{align*} 

\int (2x + 3) \cos(x)dx & = uv – \int u’ vdx \\ 

& = (2x + 3) \sin(x) – \int 2 \sin(x)dx \\ 

\end{align*} 

4. Continuing … 

\begin{align*} 

\int (2x + 3) \cos(x)dx & = (2x + 3) \sin(x) – \int 2 \sin(x)dx \\ 

& = (2x + 3) \sin(x) – 2 (-\cos(x)) \\ 

& = \boxed{(2x + 3) \sin(x) + 2 \cos(x) + C}. 

\end{align*} 

Example Integration by parts 

Problem Use integration by parts to find 

This one will involve integration by parts and a -substitution shortcut. Here are the steps of 

integration by parts: 

1. We can integrate either function, but just like the previous case it’s best to set . 

This leaves . 

2. We see . Notice  is a bit harder — this is a -sub 

shortcut though. Let’s write it as . Using the inverse power rule, and 

remembering the  factor from the -sub shortcut, we have 
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3. Applying the formula with , , , and , 

we see 

\begin{align*} 

\int x \sqrt{2x + 1}dx & = uv – \int u’vdx \\ 

& = (x) \left( \frac{(2x + 1)^{3/2}}{3} \right) – \int (1) \left( \frac{(2x + 1)^{3/2}}{3} \right)dx 

\\ 

& = \frac{x(2x + 1)^{3/2}}{3} – \int \frac{(2x + 1)^{3/2}}{3}dx \\ 

\end{align*} 

At this point, doing the integral of  may not seem easy. However, 

don’t fret — it’s a power rule and -sub shortcut problem. Watch. 

\begin{align*} 

\frac{x(2x + 1)^{3/2}}{3} – \int \frac{(2x + 1)^{3/2}}{3}dx & = \frac{x(2x + 1)^{3/2}}{3} – 

\frac{1}{3} \int (2x + 1)^{3/2}dx \\ 

& = \frac{x(2x + 1)^{3/2}}{3} – \frac{1}{3} \left( \frac{1}{2} \cdot \frac{(2x + 1)^{5/2}}{5/2} 

\right) \\ 

& = \frac{x(2x + 1)^{3/2}}{3} – \frac{1}{3} \left( \frac{1}{2} \cdot \frac{2(2x + 1)^{5/2}}{5} 

\right) \\ 

& = \frac{x(2x + 1)^{3/2}}{3} – \frac{1}{3} \left( \frac{(2x + 1)^{5/2}}{5} \right) \\ 

& = \boxed{\frac{x(2x + 1)^{3/2}}{3} – \frac{(2x + 1)^{5/2}}{15} + C }\\ 

\end{align*} 
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CHAPTER 69 

HOMEWORK: HOMEWORK: INTEGRATION INTEGRATION BY BY PARTS PARTS 

1. Solve each of the following using integration by parts: 

a. 

ans 

b. 

ans 

c. . 

ans 

d. . 

ans 

e. . (Hint: Let  and ) 

ans 

2. Watch the following Khan Academy video: Integration by parts twice 

3. Use integration by parts to solve . 

ans 

https://www.khanacademy.org/math/calculus-home/integration-techniques-calc/integration-by-parts-calc/v/integration-by-parts-twice-for-antiderivative-of-x-2-e-x


4. Use integration by parts to solve . 

ans 

5. Watch the following Khan Academy video: Integration by parts with e and cos together. 

6. Use integration by parts to find . 

ans 

7. Two part question: 

a. Use -substitution to find  and . 

 and 

ans 

b. Use integration by parts to find . 

ans 
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